
DREAMPlace 3.0: Multi-Electrostatics Based Robust VLSI
Placement with Region Constraints

Jiaqi Gu
UT Austin

jqgu@utexas.edu

Zixuan Jiang
UT Austin

zixuan@utexas.edu

Yibo Lin
Peking University
yibolin@pku.edu.cn

David Z. Pan
UT Austin

dpan@ece.utexas.edu

ABSTRACT
Placement is a critical step for modern very-large-scale integrated
(VLSI) design closure. Recently, electrostatics-based analytical place-
ment frameworks (ePlace) demonstrate promising performance in
both solution quality and runtime. However, existing ePlace-based
placers fail to meet the versatility and robustness requirements on
various placement workloads. We propose a versatile and robust
placer to solve region-constrained placement problems with better
solution quality and faster convergence. We formulate the region-
constrained placement problem into a multi-electrostatics system
via virtual blockage insertion and field isolation. To achieve robust
wirelength minimization with aggressive density constraints, we
adopt self-adaptive quadratic density penalty and entropy injec-
tion techniques to automatically accelerate and stabilize the non-
linear optimization. Our experiments on ISPD 2015 benchmarks
with region constraints demonstrate an average of >13% HPWL
improvement and >11% top5 overflow improvement compared with
advanced region-aware placers Eh?Placer and NTUplace4dr. Our
robustness-boost techniques show an average of ∼1% and ∼10%
improvement in HPWL and runtime compared to DREAMPlace on
ICCAD 2014 and ISPD 2019 benchmark suites.

1 INTRODUCTION
Placement is a critical step in the VLSI design flow. It determines the
physical locations of macros and standard cells in the layout. The
placement quality has a significant impact on the following proce-
dures, like clock synthesis and routing. Placement is also important
for upstream procedures like physical aware logic synthesis since it
provides an accurate estimation of cell congestion and wirelength.

Modern placement needs to handle various constraints to satisfy
the design and manufacturing requirements. Fence regions are one
kind of such constraints to isolate voltage regions and boost per-
formance [1]. Cells assigned to a certain fence region, consisting
of one or multiple rectangular sub-regions, have to be exclusively
placed within the region boundary. Global placement not consid-
ering region constraints will result in huge quality degradation in
legalization and detailed placement. Apart from region constraints,
placement also needs to satisfy strict maximum density/utilization
constraints for routability, leading to the difficulty in convergence

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415691

for previous ePlace-based placers. Although we can manually tune
parameters for each benchmark, it is impractical and engineering-
intensive in front of extensive and diverse placement workloads.
Therefore, a versatile and robust placement framework is in high
demand that can handle the fence region and restricted density
constraints with stable convergence and better solution quality.

Most state-of-the-art placers follow the framework of analytical
placement algorithms [2]. An analytical global placer models the
problem as a constrained nonlinear optimization which determines
the cell locations while trying to minimize the wirelength and cell
overlap. Previously, NTUplace4dr [3] was proposed to handle re-
gion constraints in placement tasks through a region-aware cluster-
ing and a new wirelength model. Eh?Placer [4] and RippleDR [5]
were proposed to solve region-constrained placement by using an
upper-bound-lower-bound optimization method with look-ahead
rough legalization honoring region constraints. There are also many
placers that tackle the classic placement problem without consider-
ing the region constraints [6–26]. Recently, ePlace-series [22–26]
were proposed to model the cells as charges and cast the placement
problem as a wirelength minimization task with electric potential
energy constraints. However, the current unified electrostatic field
is agnostic to region constraints and fails to support many advanced
designs [1, 27]. Furthermore, existing ePlace-based placers still
encounter slow convergence and inadequate robustness on newly
released benchmarks with strict density constraints, which requires
cumbersome manual parameter tuning.

In this work, we formulate the region-constrained placement
problem into the optimization in a multi-electrostatics system and
enable robust wirelength minimization with aggressive density
constraints. Our placer improves the stability of the electrostatics-
based placement algorithm with faster convergence and better
solution quality. The key contributions are highlighted as follows.
• Flexibility: we propose a multi-electrostatics based place-
ment engine that efficiently extend ePlace-series to handle
region and restricted density constraints.
• Effectiveness: our quadratic density penalty, individual elec-
tric density controlling, and region-aware legalization meth-
ods boost the placement solution quality and congestion
over 10% compared to a state-of-the-art region-aware placer.
• Robustness: we propose a divergence-aware optimizer with
self-adaptive rollback and entropy injection that can im-
prove wirelength and runtime by ∼1% and ∼10% with better
convergence stability.

The remainder is organized as follows. Section 2 describes the
background for analytical placement and motivation; Section 3
presents details about the proposed method; Section 4 demonstrate
experimental results compared with previous placers on newly
released benchmarks, followed by the conclusion in Section 5.

https://doi.org/10.1145/3400302.3415691

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Jiaqi Gu, Zixuan Jiang, Yibo Lin, and David Z. Pan

2 BACKGROUND
In this section, we briefly review the placement problem and our
motivations.

2.1 Analytical Global Placement
An analytical placer usually splits the placement into three stages:
global placement, legalization, and detailed placement. At the first
global placement stage, we minimize the wirelength with density
constraints, as formulated in Problem (1).

min
x,y

∑
𝑒∈𝐸

WL(𝑒; x, y),

s.t. D(x, y) ≤ D̂,
(1)

where WL(·; ·) is the wirelength function of a net instance 𝑒 ∈ 𝐸,
D(·) is the density of a certain location in the layout, and D̂ is a
target density predefined by users. Then, the legalization procedure
will be applied to move all cells to legal locations, during which
row alignment, cell overlap, boundary enclosure, fence region con-
straints will be checked. Finally, detailed placement will continue
optimizing the cell location as the last-stage refinement.

Penalty methods are a typical approach to solve the constrained
optimization problem in global placement. We replace a constrained
optimization problem by a series of unconstrained problems whose
solutions ideally converge to the solution of the original constrained
problem. Specifically, in global placement, we solve a series of
unconstrained problems shown in Eq. (2),

min
x,y

∑
𝑒∈𝐸

WL(𝑒; x, y) + 𝜆D(x, y) (2)

where 𝐷 (·) is the density penalty to spread cells out in the layout.
The density constraints can be satisfied by gradually increasing
𝜆. When 𝜆 is small, we focus on minimizing the wirelength. As
𝜆 grows, we complete a smooth transition from (1) wirelength
centric minimization to (2) wirelength and density co-optimization.
The movable cells will spread gradually while keeping the optimal
wirelength.

2.2 Electrostatics-based Placement
ePlace-series placers [22–25] are among a state-of-the-art family of
placement algorithms that model the layout and netlist as a unified
electrostatic system. It approximates the non-differentiable half-
perimeter wirelength (HPWL) with a weighted-average wirelength
(WA) model originally proposed by [28],

WA𝑒 =
∑
𝑖∈𝑒 𝑥𝑖𝑒

𝑥𝑖
𝛾∑

𝑖∈𝑒 𝑒
𝑥𝑖
𝛾

−
∑
𝑖∈𝑒 𝑥𝑖𝑒

− 𝑥𝑖
𝛾∑

𝑖∈𝑒 𝑒
− 𝑥𝑖
𝛾

, (3)

where𝛾 is a parameter that controls the smoothness and accuracy of
the approximation to HPWL. A smaller 𝛾 indicates a more accurate
but less smooth HPWL approximation.

Analogous to an electrostatic system, cells aremodeled as charges,
the cell density is modeled as potential energy, and the gradient
corresponds to the electric force that drives the movement of cells.
The electrostatic analogy has the following advantages: 1) smooth
density penalty function; 2) a global view to the entire placement
region even with very fine bin dimensions. The electric potential

and field distribution can be computed by solving the Poisson’s
equation from the charge density distribution [22, 23].

∇ · ∇𝜓 (𝑥,𝑦) = −𝜌 (𝑥,𝑦), (4a)
n̂ · ∇𝜓 (𝑥,𝑦) = 0, (𝑥,𝑦) ∈ 𝜕𝑅, (4b)∬

𝑅

𝜌 (𝑥,𝑦) =
∬
𝑅

𝜓 (𝑥,𝑦) = 0, (4c)

where 𝑅, 𝜕𝑅, n̂ denote the placement region, the region boundary,
and the outer normal vector of the region, respectively. 𝜌 is the
charge density, and𝜓 is the electric potential. The numerical solu-
tion of Poisson’s equation can be efficiently obtained with spectral
methods based on an𝑀 ×𝑀 grid [22, 23].

A diagonal-Hessian-preconditioned Nesterov’s optimizer with
Golden-section line-search was proposed in [23] to solve this non-
convex optimization problem (2). However, it is not easy to guar-
antee the convergence to solutions with high quality. Parameter
tuning is necessary to search for a good configuration. For example,
the placement bin dimensions, the stop criterion, and the density
penalty weight often need to be adjusted for specific benchmarks.

2.3 Region and Density Constraints
Various placement constraints are imposed to be compatible with
increasingly complex design rules. Region constraints are specified
by designers to improve performance, leave space for later opti-
mization, reduce power consumption, etc. [1]. By definition, a fence
region is member-hard and non-member-hard. Specifically, interior
cells that are assigned to a fence region must be placed inside the
region boundary, and exterior cells that are not assigned to it are
not allowed to appear in the region. A fence region consists of one
or multiple spatially disjoint rectangular sub-regions, which may
have overlaps with physical macros.

Maximum utilization constraints are user-defined local density
limits for later-stage optimization and better routability, which are
lower-bounded by the native logic utilization. A low target density
represents a less dense placement solution, and different regions
are likely to have different cell distributions, thus different uti-
lization/density limits. Previous placement algorithms [3–5] adopt
clustering, look-ahead rough legalization methods, and routabil-
ity optimization techniques to address fence region and density
constraints. In the current electrostatics-based placement frame-
work [22], electric forces drive all movable cells to spread towards
lower potential energy without considering region constraints or
region-specific density limits. Based on our empirical experience,
similar rough legalization techniques to impose region constraints
during optimization does not workwell in ePlace-based algorithms.
Moreover, a relatively low target density is likely to cause conver-
gence issues in ePlace-based placers. Therefore, we are motivated
to put forward a flexible and robust placer to address region and
density constraints with better solution quality and more stable
convergence.

3 METHOD
In this section, we present details on our proposedmulti-electrostatics
based framework to solve VLSI placement tasks with fence region
constraints.

DREAMPlace 3.0: Multi-Electrostatics Based Robust VLSI Placement with Region Constraints ICCAD ’20, November 2–5, 2020, Virtual Event, USA

3.1 Multi-Electrostatics Based Placement
Engine with Region Constraint

Region constraints restrict the legal placement space for movable
instances such that they have to be placed within the assigned
boundary exclusively, and other exterior cells must be placed out-
side the boundary. Let 𝑣 denote the position of all instances, and 𝑟
represents the valid regions for these instances. Each region can be
described as a disjoint set of rectangular subregions. We formulate
the placement problem with 𝐾 fence regions as,

min
𝑣

∑
𝑒∈𝐸

WL(𝑒; 𝑣) + 𝜆D(𝑣),

s.t. 𝑣𝑘 = (x𝑘 , y𝑘) ∈ 𝑟𝑘 , 𝑘 = 0, · · · , 𝐾,
(5)

where the 𝐾-th region is for exterior cells that are not assigned
to any fence region, i.e., the exterior region 𝑟𝐾 is defined as the
placeable space excluding physical macros (including placement
blockages) and all fence regions. To solve this constrained non-
convex optimization problem, we cast it as a multi-electrostatics
system by relaxing the constraints as 𝐾 + 1 independent density
penalty terms,

min
𝑣

∑
𝑒∈𝐸

WL(𝑒; 𝑣) + ⟨𝜆,D(𝑣, 𝑟)⟩, (6)

where the density weight 𝜆 ∈ R𝐾+1 is a vector (𝜆0, · · · , 𝜆𝐾) and
D(𝑣, 𝑟) = (D(𝑣0, 𝑟0), · · · ,D(𝑣𝑘 , 𝑟𝑘)) is a potential energy vector
that considers fence regions into density calculation. We simplify
D(𝑣𝑘 , 𝑟𝑘) toD𝑘 in later discussion. Now, we discuss how to obtain
the multi-electric potential energy and a quadratic penalty method
for better convergence. The entire global placement flow of our
multi-electrostatics based method is shown in Fig. 1.

3.1.1 Field Isolation and Virtual Blockage Insertion. In order to
guide cells to their assigned legal regions simultaneously with-
out interference, we replace the original universal electric field to
𝐾 + 1 mutually isolated electrostatic fields with independent fillers,
potential maps, target density, electric force, density weight, and
optimization stop criterion. This electric field isolation is only ap-
plied in electrostatics-related computation, while the wirelength
objective remains the same as used in a unified electrostatic sys-
tem. We denote the regions of total placement site and physical
macros (including placement blockages) as 𝐴 and𝑚, respectively.
For the 𝑘-th electrostatic field, we denote the assigned instance
group and corresponding fence region as 𝑣𝑘 and 𝑟𝑘 , respectively.
Every placeable space outside the assigned region is padded with
positively-charged virtual blockages 𝑏𝑘 , which is a union of one
or multiple rectangles. The virtual rectangular blockages can be
obtained by the following geometric operation,

𝑏𝑘 =

{
rectangle_slicing(𝐴\(𝑟𝑘 ∪𝑚)), 0 ≤ 𝑘 < 𝐾

rectangle_slicing(𝑟𝑘\𝑚), 𝑘 = 𝐾
(7)

where \ represents geometric difference operation, ∪ is geometric
union, and rectangle_slicing(·) slices the polygon into multiple
disjoint rectangular boxes. This method guarantees the overlapping
between fence region and macros are correctly handled and the
virtual blockages have no overlapping with physical macros. We
visualize the virtual blockages on ISPD 2015 superblue16_a in Fig. 2.
In the electric potential energy computation, the virtual blockages

will contribute to the total potential energy such that the spreading
of cells 𝑣𝑘 is aware of the region constraint 𝑟𝑘 . Instead of using a
global target density D̂ ∈ [0, 1] to assign the charge of fixed macros,
we observe that an individual target density is important for stable
convergence and solution quality. Based on the area utilization
statistics for this specific electrostatic field, we calculate the local
target density D̂𝑘 ∈ [0, 1] as,

D̂𝑘 = max (𝐿𝑜𝑐𝑎𝑙𝐴𝑟𝑒𝑎𝑈𝑡𝑖𝑙 + 𝜖, D̂) = max
(𝐴𝑟𝑒𝑎 (𝑣𝑘)
𝐴𝑟𝑒𝑎 (𝑟𝑘\𝑚)

+ 𝜖, D̂
)
, (8)

where 𝜖 is a density margin that is adopted to avoid divergence
issue induced by overly low target density.

Apart from independent virtual blockage insertion, another as-
pect of field isolation is independent filler insertion. Fillers are
necessary virtual instances that can pad whitespaces for compact
placement solution. The total area of movable filler cells 𝑣 𝑓

𝑘
for

region 𝑟𝑘 is calculated based on the local target density,

𝐴𝑟𝑒𝑎 (𝑣𝑓
𝑘
) =

(
𝐴 −𝐴𝑟𝑒𝑎 (𝑚) −𝐴𝑟𝑒𝑎 (𝑏𝑘)

)
D̂𝑘 −𝐴𝑟𝑒𝑎 (𝑣𝑘) . (9)

For better convergence, we set the filler height as the placement
row height and width as the average width of movable standard
cells𝑤 (𝑣 𝑓

𝑘
) = 1

|𝑣𝑘 |
∑
𝑤 (𝑣𝑘), where the smallest 5% and largest 5%

outliers are discarded. Fillers will be uniformly randomly placed
within its region 𝑟𝑘 in the initialization for a smooth initial en-
ergy distribution. Figure 3 shows the multi-electrostatics based
placement process. The filler initialization and cell spreading under
multi-field are demonstrated in Fig 3a,3b,3c. Movable instances and
fillers are driven towards their individual fence region by the repul-
sive force from virtual blockages. Fillers generated from individual
target density lead to compact placement in each region.

In terms of algorithmic complexity and runtime, this multi-
electric-field method has the same sequential complexity O(|𝑣 | +
𝑀2 log𝑀) as the original unified electric field. Our efficient multi-
electrostatics based method has sublinear runtime overhead w.r.t. to
number of regions𝐾 compared with the original single electrostatic
field. The first reason is that the initial density map from virtual
blockages only need to be calculated once initially. The second
reason is that different regions deal with their own instances inde-
pendently, thus the complexity for region 𝑘 is O(|𝑣𝑘 | +𝑀2 log𝑀).
An efficient parallel density computation for all regions can be
expected for further speedup.

3.1.2 Quadratic Density Penalty with Dynamic Density Weight
Scheduling. During optimization of Eq. (6), the wirelength dom-
inates in the beginning with a relatively small density weight 𝜆
for better solution quality. This mechanism works well when suf-
ficient nets exist among macros, I/O pins, and movable instances,
such that the wirelength-induced force can help spread the cells. In
other words, the overall wirelength-related gradient has a similar
high-dimensional direction to the density-related gradient. How-
ever, this statement does not always hold when the connections
between movable instances and fixed macros are lacking, such that
the wirelength objective tries to collapse all cells as a tiny cluster for
hundreds of iterations until density weight gets large enough. To
stabilize and accelerate the convergence of our multi-electrostatic
system on various benchmarks, we extend the first-order density

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Jiaqi Gu, Zixuan Jiang, Yibo Lin, and David Z. Pan

Movable Macro Filler

Region 0 Region 1 Region K

...

Gather&Scatter

Wirelength Obj

Virtual Blockage
Insertion

Virtual Blockage
Insertion

Virtual Blockage
Insertion

Density Obj Density Obj Density Obj

Isolation Isolation

Objective
Density Weight

Scheduler

Nesterov s
Optimizer

Adjust
Wirelength Smoothness

Region Stop
Criterion

Divergence-aware
Preconditioner

Figure 1: Multi-electrostatics based placement framework with region constraints.

Fence
Region 0

Fence
Region 1

Exterior
Region

Figure 2: Virtual blockage insertion on ISPD 2015 [1] su-
perblue16_a with 2 fence regions and an exterior region (re-
gion 2 in our annotation). Blue shadows are sliced rectangu-
lar virtual blockages for regions, where physical macros are
excluded based on Eq. (7).

penalty in Eq. (6) using a modified augmented Lagrangian formula-
tion [20, 29],

𝑓 =
∑
𝑒∈𝐸

WL(𝑒; 𝑣) +
〈
𝜆,D(𝑣, 𝑟) + 1

2
𝜇P𝜆 ⊙ D2 (𝑣, 𝑟)

〉
, (10)

where the quadratic penalty is also controlled by the density weight
𝜆 to avoid over-spreading of cells. The weighting coefficient 𝜇 bal-
ances between first-order and second-order density penalty terms,
which is empirically set to 1000. P𝜆 ∈ R𝐾+1 is a vectorized density
weight preconditioner based on the initial density P𝜆 = 1

D0 . The
period before the entire instances are completely spread is criti-
cal for wirelength optimization. Therefore, we need to carefully
adjust the density weight individually for each electrostatic field.
We adopt a first-order-gradient-based method [29] to update the
density weight 𝜆 with a preconditioned subgradient estimator, de-
scribed in Alg. 1. Lines 1-4 initialize the density weight based on

Algorithm 1 Density weight scheduling for multi-electrostatic
system.
Require: electric potential energy function D(·) , wirelength function

WL(·) , density weight scaling factor 𝜂, maximum density weight 𝜆𝑚𝑎𝑥 ,
density weight preconditioner P𝜆 , quadratic penalty weighting coeffi-
cient 𝜇, density weight step size lower bound 𝛼𝑙 and upper bound 𝛼ℎ
and maximum iteration𝑇 .

1: 𝑐0 ← 1 + 𝜇D0 ⊙ P𝜆
2: 𝑢0 ← D0 ⊙ P𝜆 + 1

2 𝜇 (D
0 ⊙ P𝜆)2

3: 𝑢0 ← 𝜂
∥∇∑𝑒 WL(𝑒,𝑣0) ∥1∑𝐾
𝑘=0𝑢

0
𝑘
𝑐0
𝑘
∥∇D0

𝑘
∥1
𝑢0

4: 𝜆0 ← 𝑢0 ⊙ 𝑐0 ⊲ Initialize density weight vector
5: 𝛼0 ← (𝛼𝑙 − 1) ∥𝑢0 ∥2 ⊲ Initialize density weight step size
6: for 𝑡 ← 1, · · · ,𝑇 do

7: ∇𝜆𝑡 ← D𝑡 ⊙P𝜆+
𝜇
2 (D

𝑡 ⊙P𝜆)2

∥D𝑡 ⊙P𝜆+
𝜇
2 (D𝑡 ⊙P𝜆)2 ∥2

8: 𝑢𝑡+1 ← 𝑢𝑡 + 𝛼𝑡 ∇𝜆𝑡
9: 𝑐𝑡+1 ← 1 + 𝜇D𝑡 ⊙ P𝜆
10: 𝜆𝑡+1 ← min(𝜆𝑚𝑎𝑥 ,𝑢𝑡+1 ⊙ 𝑐𝑡+1) ⊲ Update density weight vector

11: 𝛼𝑡+1 ← 𝛼𝑡
((

ln (𝜇∥D𝑡 ⊙P𝜆 ∥2)
)
+

1+
(
ln (𝜇∥D𝑡 ⊙P𝜆 ∥2)

)
+
(𝛼ℎ − 𝛼𝑙) + 𝛼𝑙

)
⊲ Update density

weight step size

the ratio of wirelength gradient norm and density gradient norm,
where the density weight scaling factor 𝜂 is set to 8 × 10−5 in our
experiments. Line 5 initializes the density weight step size based on
the predefined lower bound. After each iteration, we calculate the
normalized subgradient of the density weight in line 7 and update
the density weight using gradient descent method in lines 8-10.
The density weight step size increases exponentially with a density-
controlled factor in line 11.We configure the lower and upper bound
of density weight step size to 1.03 and 1.04, respectively.

DREAMPlace 3.0: Multi-Electrostatics Based Robust VLSI Placement with Region Constraints ICCAD ’20, November 2–5, 2020, Virtual Event, USA

(a) (b) (c) (d)

Figure 3: Multi-electrostatics based placement visualization on ISPD 2015 [1] superblue16_a. (a) Initialization with uniformly
placed fillers (gray cells) in each region. (b) Region-aware cell spreading based on field isolation and virtual blockage insertion.
(c) Global placement result. (d) Legal solution after region-aware legalization.

3.1.3 Multi-field Gradient Propagation with Divergence-aware Pre-
conditioning. To efficiently control the gradients flow and reduce
the overhead for multi-electrostatic-field optimization, we leverage
the differentiable gather/scatter operation to isolate the gradients
from different electric fields, shown in Fig. 1. Moreover, we observe
that gradient flows from different electric fields are not balanced
such that the optimization for the 𝐾-th region 𝑟𝐾 may converge
slowly or even diverge. We apply divergence-aware gradient pre-
conditioning partially to instances 𝑣𝐾 . The second-order derivative
of the wirelength objective is estimated with the pin count of the
instances [22], while the second-order derivative of the augmented-
Lagrangian-based density penalty is approximated by the instance
area [22, 25, 29], which is the diagonal Hessian. The divergence-
aware preconditioner P𝐾 ∈ R2 |𝑣 | is given by,

P𝐾 = min
(
1,
(
∇2𝑣𝐾

∑
𝑒

𝑊𝐿(𝑒, 𝑣) + 𝛽𝜆𝐾∇2𝑣𝐾D(𝑣𝐾 , 𝑟𝐾)
)−1)

= min
(
1,
(
#𝑝𝑖𝑛(𝑣𝐾) + 𝛽𝜆𝐾𝑤 (𝑣𝐾) ⊙ ℎ(𝑣𝐾)

)−1) (11)

where #𝑝𝑖𝑛(·) is the number of pins of an instance,𝑤 (·) and ℎ(·)
is the cell width and height. For fence regions 0 ≤ 𝑘 < 𝐾 , we
have P𝑘 = 1. We initialize 𝛽 to 1 and dynamically adjust it when
the global density overflow is below a certain threshold, e.g., 0.3.
Specifically, 𝛽 is doubled every 20 optimization iterations to slow
down the movement of large-sized cells. The global electric density
overflow is given by,

𝑂𝑉𝐹𝐿 =

∑𝑀−1,𝑀−1
𝑢𝑥=0,𝑢𝑦=0

(
𝜌 (𝑢𝑥 ,𝑢𝑥) − D̂

)
+

𝐴𝑟𝑒𝑎 (𝑣) , (12)

where 𝜌 (𝑢𝑥 , 𝑢𝑦) is the normalized charge density on an𝑀 ×𝑀 grid.
The grid size𝑀 is typically configured as 512 or 1024. This global
overflow is also used to adjust the wirelength smoothness factor
𝛾 . Based on this dynamically-adjusted preconditioner, we give the
preconditioned gradient to the Nesterov’s optimizer,

∇̂𝑓 = ∇𝑓 ⊙ P . (13)

The divergence-aware preconditioning is designed to slow down
the sensitive movement of large-sized cells when global placement
is nearly converged, which can help stabilize the optimization. An
upper bound of 𝛽 , e.g., 210, is set to avoid numerical instability.

3.1.4 Independent Stop Criterion. Different electrostatic systems
converge at different speeds, thus the same optimization iterations
can lead to divergence due to density weight explosion given its
exponentially increased step size. Therefore, to adapt to different
convergence speeds of 𝐾 +1 regions, we first set up an upper bound
for the densityweight, e.g., 10, and adopt an individual stop criterion
for each electric field based on its individual density overflow,

𝑂𝑉𝐹𝐿𝑘 =

∑𝑀−1,𝑀−1
𝑢𝑥=0,𝑢𝑦=0

(
𝜌𝑘 (𝑢𝑥 ,𝑢𝑦) − D̂𝑘

)
+

𝐴𝑟𝑒𝑎 (𝑣𝑘)
, (14)

where 𝜌𝑘 (𝑢𝑥 , 𝑢𝑦) is the normalized charge density map for region
𝑘 . Once the density overflow of the 𝑘-th region runs below the
global stop overflow, e.g., 0.07, we freeze the movable instances
𝑣𝑘 and the corresponding filler cells 𝑣 𝑓

𝑘
to avoid divergence. The

gradient from the wirelength and density objectives will only flow
to unfrozen instances.

3.2 Region-Aware Legalization
After all𝐾 +1 regions finish their global placement flow, we legalize
the solution with a region-aware incremental legalizer for our multi-
electrostatic system. Similar to the field isolation used in global
placement, for region 𝑟𝑘 , we transform the fence region constraint
into a non-fence-region legalization problem by inserting virtual
blockages. We can simultaneously legalize 𝐾 + 1 regions without
interference. The detailed legalization flow is described in Alg 2.
The invalid space constrained by fence region is padded with vir-
tual blockages such that the region-unaware legalizer can generate
equivalent solution to a specifically designed region-aware legalizer.
Abacus legalizer [30] is used to minimize the total displacement
between the final legal solution and the global placement solution.
Figure 3d visualize the legal solution after region-aware legaliza-
tion. The complexity of this region-aware legalization algorithm is
O(|𝑣 |), and different regions can be potentially legalized in parallel.

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Jiaqi Gu, Zixuan Jiang, Yibo Lin, and David Z. Pan

Algorithm 2 Fence-region-aware incremental legalization based
on virtual blockage insertion.

Require: global placement solution 𝑣𝑇 = (𝑣𝑇0 , 𝑣𝑇1 , · · · , 𝑣𝑇𝐾) , physical
macros and placement blockages 𝑚, regions 𝑟 = (𝑟0, 𝑟1, · · · , 𝑟𝐾) ,
virtual blockages for each region 𝑏0, 𝑏1, · · · , 𝑏𝐾 , movable macro le-
galizer ml(·) , greedy standard cell legalizer gl(·) , Abacus standard
cell legalizer al(·) , and legality checker with fence region constraints
lg_check(·, 𝑟) .

Ensure: legalized placement solution with region constraints 𝑣̃ =

(𝑣0, 𝑣1, · · · , ˜𝑣𝐾) .
1: for 𝑘 ← 0, · · · , 𝐾 do
2: 𝑣𝑚

𝑘
← ml(𝑣𝑇

𝑘
,𝑚,𝑏𝑘) ⊲ Legalize movable macros

3: 𝑣
𝑔

𝑘
← gl(𝑣𝑚

𝑘
,𝑚,𝑏𝑘) ⊲ Greedily legalize instances in region 𝑘

4: if lg_check(𝑣̃) = True then
5: for 𝑘 ← 0, · · · , 𝐾 do
6: 𝑣𝑘 ← al(𝑣𝑚

𝑘
, 𝑣
𝑔

𝑘
,𝑚,𝑏𝑘) ⊲ Minimize displacement between 𝑣𝑚

and 𝑣𝑔
7: else
8: 𝑣̃ ← (𝑣𝑔0 , 𝑣

𝑔

1 , · · · , 𝑣
𝑔

𝐾
) ⊲ Not enough space for a legal placement

Diverge Diverge

ISPD 2015 mgc_fft_1 ISPD 2015 mgc_fft_2

H
PW

L
 (

10
6)

1

2

3
4
5

Figure 4: Diverged HPWL and overflow curves using previ-
ous method on two ISPD 2015 benchmarks [1]

3.3 Robust Optimization via Self-Adaptive
Rollback and Entropy Injection

The above proposed multi-electrostatics based method enables our
engine to handle region-constrained placement tasks. However, a
robust placement engine is required to achieve stable convergence
on various benchmarks, including those without fence regions.
Placement problem is a nonconvex optimization problem where
poor first-order and second-order stationary points will trap the
optimizer, leading to an undesired saddle point in density objective
and degraded local minima in wirelength objective [31]. There are
some benchmarks where the original Nesterov’s optimizer [23, 25]
will diverge, leading to longer runtime and unsatisfying solution
quality. Even though a preconditioned Nesterov’s accelerated gra-
dient descent optimizer with backtracking line search is adopted as
our optimizer, in some benchmarks we observe suboptimal place-
ment solutions and slow convergence speed or even divergence,
shown in Fig. 4. We propose to a self-adaptive Nesterov’s optimizer
to achieve faster, more stable convergence with better solution
quality. We first address slow convergence issue caused by slow
cell spreading in the early stage. A window-based plateau (PLT)
detector is adopted to detect slow convergence,

PLT =


max𝐿 (𝑂𝑉𝐹𝐿) −min𝐿 (𝑂𝑉𝐹𝐿)

avg𝐿 (𝑂𝑉𝐹𝐿)
< 𝛿𝑃𝐿𝑇 , 𝑂𝑉 𝐹𝐿 > 0.9

False, 𝑂𝑉 𝐹𝐿 ≤ 0.9,
(15)

where max𝐿 (·), min𝐿 (·), and avg𝐿 (·) calculate the maximum, min-
imum, and average value within an 𝐿-length window, respectively.
𝛿𝑃𝐿𝑇 is the divergence threshold. We empirically set 𝐿 and 𝛿𝑃𝐿𝑇
to 20 iterations and 0.1%. Once PLT is asserted, we perform three
steps, 1) turn on quadratic density penalty term if the default en-
gine disables it, 2) increase density weight, e.g., by 2×, and 3) inject
perturbation to non-fixed instances with layout shrinking. By de-
fault, we enable quadratic penalty and subgradient-based density
weight scheduling for region-constrained benchmarks to stabilize
multiple electrostatic fields. For benchmarks without fence regions,
our engine by default falls back to the original ePlace formulation,
where the original first-order density penalty and HPWL-based
density weight adjustment [22, 25] are used. For brevity, we show
the perturbation along the 𝑥-axis as,

𝑥 = 𝑠

(
𝑥 −

∑
𝑖∈𝑣 𝑥𝑖
|𝑣 |

)
+
∑
𝑖∈𝑣 𝑥𝑖
|𝑣 | + Δ𝑥, (16)

where Δ𝑥 is a perturbation vector sampled from a multivariate
Gaussian distribution Δ𝑥 ∼ N(0, 𝜎2). The same entropy injec-
tion mechanism is also applied to the 𝑦-axis. The shrinking fac-
tor 𝑠 ∈ (0, 1) is designed for backtracking the spreading process
and increasing the density overflow, providing opportunities to re-
optimize the perturbed wirelength. Inspired by perturbed gradient
descent methods [31], this strategy injects necessary entropy into
the optimization engine to help escape from saddle points or high
potential wells in the solution space [31]. Also, in the stage when
overflow is still higher than 0.9, noise injection can be considered
as a cell spreading mechanism.

Further, we address the divergence issue of the original Nes-
terov’s optimizer [22]. In benchmarks with restricted density con-
straints where the target density is very close to the native utiliza-
tion, the optimizer is likely to diverge after a relatively low density
overflow is achieved. Further optimization leads to severe HPWL
degradation or even a corrupted placement solution. The primary
reason is that the previous Nesterov’s optimizer adopts the Golden-
section line search with estimated Lipschitz constant to decide the
appropriate step size [23], it will regardlessly update the cell loca-
tion even if the gradient descent direction is hard to find. Given that
such a mechanism does not guarantee an objective improvement
in each parameter updating step, it fails to tackle the extremely
sensitive late-stage in placement while the density overflow fluc-
tuates before reaching stop criterion. We adopt a window-based
divergence detector to check whether the overflow fluctuates a lot
or wirelength and overflow are worse than the best-recorded check-
point over a certain threshold, e.g., 𝑂𝑉𝐹𝐿100 . If divergence is detected
in the later optimization stage, e.g.,𝑂𝑉𝐹𝐿 < 4×StopOVFL, we will
immediately stop global placement to avoid prolonged runtime and
roll back to the checkpoint with best-recorded overflow as our final
global placement solution to prevent quality degradation.

4 EXPERIMENTS
To show the effectiveness of our multi-electrostatics based VLSI
placement algorithm, we evaluate the HPWL and congestion met-
rics on ISPD 2015 contest benchmark suite [1] and compare the
results with Eh?Placer [4] and NTUplace4dr [3] using the same
target utilization limit. Since Eh?Placer and NTUplace4dr binary
executable files currently do not support ISPD 2019 [27] or ICCAD

DREAMPlace 3.0: Multi-Electrostatics Based Robust VLSI Placement with Region Constraints ICCAD ’20, November 2–5, 2020, Virtual Event, USA

Table 1: Comparison of HPWL, top5 overflow, and runtime with Eh?Placer [4] and NTUplace4dr [3] on ISPD 2015 benchmark
suite with region constraints. OVFL is short for overflow. HPWL and top5 OVFL are normalized to our results. After detailed
placement of all placers, we use NTUplace4dr and the embedded NCTUgr [32] global router to evaluate their dumped final place-
ment solutions and report their HPWL and top5 overflow with no legality violation. RT represents runtime in seconds.

Design #cell #nets #region Eh?Placer [4] (8 CPU threads) NTUplace4dr [3] (8 CPU threads) Ours (GPU)
Top5 OVFL HPWL RT Top5 OVFL HPWL RT Top5 OVFL HPWL RT

mgc_des_perf_a 108K 115K 4 74.40 2.69E+09 59 73.14 2.44E+09 207 66.17 2.23E+09 16
mgc_des_perf_b 113K 113K 12 62.00 1.77E+09 49 71.71 2.00E+09 212 63.01 1.80E+09 30
mgc_edit_dist_a 127K 134K 1 90.67 5.08E+09 66 92.95 4.91E+09 140 86.68 4.26E+09 12

mgc_matrix_mult_b 146K 152K 3 48.77 3.82E+09 97 49.56 3.64E+09 172 47.87 3.16E+09 17
mgc_matrix_mult_c 146K 152K 3 47.24 3.71E+09 106 48.13 3.48E+09 198 46.57 3.06E+09 16
mgc_pci_bridge32_a 30K 34K 4 39.74 4.10E+08 14 41.23 4.72E+08 54 35.71 3.88E+08 15
mgc_pci_bridge32_b 29K 33K 3 31.94 8.14E+08 15 35.79 6.98E+08 37 31.82 6.36E+08 18
mgc_superblue11_a 926K 936K 4 59.96 3.93E+10 653 58.61 4.00E+10 8684 56.15 3.51E+10 56
mgc_superblue16_a 680K 697K 2 68.81 2.86E+10 359 89.67 2.94E+10 3125 68.95 2.69E+10 32

ratio 1.124 1.206 3.717 1.112 1.133 34.756 1.000 1.000 1.000

2014 [33] benchmark suites due to benchmark format issues, we
only evaluate on ISPD 2015 benchmark suite. It is worth noting that
in this work, our placement engine is wirelength-driven without
explicit routability optimization. Therefore, only comparing the
HPWL metric with Eh?Placer [4] and NTUplace4dr [3], which
involve dedicated optimization effects on detailed-routability and
design rule violation, etc., is not a very fair evaluation. We choose
to show the top5 overflow, the average global routing overflow in
the top 5% congested routing grids, reported by NCTUgr [32] global
router as a representative metric for routability evaluation. To clar-
ify, our wirelength-driven region-aware placement engine does not
claim better global-routability or detailed-routability than the other
two placers as routability is not part of our optimization objective.
Hence, a less competitive routed wirelength, routability, and design
rule violations can be expected for our method. We also compare
with DREAMPlace [25] on ISPD 2019 and ICCAD 2014 benchmarks
without region constraints to validate our convergence robustness.

4.1 Experimental Settings
We build our multi-electrostatic system on an open-source VLSI
placer DREAMPlace, including a GPU-based global placer, a CPU-
based legalizer, and a GPU-based detailed placer ABCDPlace [34].
Our baseline placers are Eh?Placer [4], NTUplace4dr [3], and
DREAMPlace [25]. All the experiments run on a Linux server with
Intel Core i9-7900X @ 3.30 GHz and one NVIDIA TITAN Xp GPU.
We use the datatype of single-precision floating-point for evalua-
tion. Eh?Placer and NTUplace4dr run on the CPU with 8 threads,
while DREAMPlace and our framework are executed on the GPU.

4.2 HPWL and Routability Evaluation
On ISPD 2015 benchmarks [1] with region constraints, we com-
pare HPWL, top5 overflow, and runtime with Eh?Placer [4] and
NTUplace4dr [3] in Table 1. DREAMPlace [25] is not evaluated on
these nine benchmarks since it does not support fence region con-
straint currently. We tried to modify DREAMPlace and perform
rough legalization during global placement to force the cell to
spread in the assigned region. However, performance and optimiza-
tion stability are much worse than the other two methods. Thus
DREAMPlace is not reported in Table 1 for concise demonstration.

On all nine benchmarks with fence region constraints, the pro-
posed placer achieves an average of 20.6% and 13.1% HPWL im-
provement compared with Eh?Placer and NTUplace4dr, respec-
tively. Even if we do not perform the routability optimization, our
multi-electrostatics based placement engine can achieve an aver-
age of 12.4% and 11.2% top5 overflow improvement compared with
detailed-routability-driven Eh?Placer and NTUplace4dr, respec-
tively. However, it is worth noting that this overflow improve-
ment does not necessarily indicate better detailed-routability, as
routability-related rules are not considered in our work. A thorough
evaluation of detailed-routability and design rule violations can
be obtained by the industrial platform provided by the ISPD 2015
contest. But unfortunately, we currently do not have access to the
official industrial evaluation platform [1] that has already been un-
available. In terms of runtime, we record the elapsed wall time for
the entire placement flow. Our GPU-accelerated multi-electrostatics
based placement achieves 3.717× and 34.76× runtime speedup than
8-CPU-threaded Eh?Placer and NTUplace4dr, respectively.

4.3 Robustness Evaluation
In this section, we evaluate the robustness of our placement engine
on newly released benchmarks, including ICCAD 2014 [33], ISPD
2015 [1], and ISPD 2019 [27]. Table 2 shows the comparison re-
sults with Eh?Placer [4], NTUplace4dr [3], and DREAMPlace [25]
on the rest 11 ISPD 2015 benchmarks without fence regions. We can
achieve an average of 3.8% top5 overflow reduction, 17.0% HPWL
improvement, and 13.89× speedup compared to Eh?Placer. Com-
pared with NTUplace4dr, our method achieves an average of 7.2%
and 37.8× improvement in HPWL and runtime, respectively. Since
our placer is wirelength-driven without routability optimization,
we have slightly larger, i.e., 3%, top5 overflow than NTUplace4dr.
Compared with DREAMplace [25], we achieve 1.4% better HPWL,
3.3% lower top5 overflow, and a faster convergence speed. In Table 3,
we further evaluate the robustness on ISPD 2019 and ICCAD 2014
benchmark suites. Note that NTUplace4dr is not evaluated due to
benchmark compatibility issues.

Table 3 compares our method with DREAMPlace. On those bench-
marks, our method can adaptively detect convergence issues, and

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Jiaqi Gu, Zixuan Jiang, Yibo Lin, and David Z. Pan

Table 2: Comparison of HPWL, top5 overflow, and runtime with Eh?Placer [4], NTUplace4dr [3], and DREAMPlace [25] on ISPD
2015 benchmark without region constraints. OVFL is short for overflow. HPWL and top5 OVFL are normalized to our results.
After detailed placement of all placers, we use NTUplace4dr and the embedded NCTUgr [32] global router to evaluate their
dumped final placement solutions and report their HPWL and top5 overflowwith no legality violation.RT represents runtime
in seconds. For DREAMPlace, diverged (div.) benchmarks are stopped after reaching its maximum iteration. For our method, r,
q, e represent rollback, quadratic penalty, or entropy injection is triggered.

Design #cell #nets Eh?Placer [4] (8 CPU threads) NTUplace4dr [3] (8 CPU threads) DREAMPlace [25] (GPU) Ours (GPU)
Top5 OVFL HPWL RT Top5 OVFL HPWL RT Top5 OVFL HPWL RT Top5 OVFL HPWL RT

des_perf_1 113K 113K 68.27 1.30E+09 73.7 63.87 1.20E+09 200.9 67.92 1.13E+09 5.4 65.78 1.12E+09 5.3 q&e
fft_1 35K 33K 60.14 4.49E+08 27.9 61.57 4.60E+08 51.9 56.54 4.16E+08 5.3(div.) 56.29 4.12E+08 4.2 r
fft_2 35K 33K 49.17 4.36E+08 16.8 55.10 4.80E+08 69.3 47.91 3.84E+08 5.5(div.) 47.56 3.75E+08 4.3 r
fft_a 34K 32K 37.60 8.42E+08 15.3 36.07 6.39E+08 57.1 35.15 6.29E+08 4.3 34.91 6.27E+08 4.1
fft_b 34K 32K 58.45 1.02E+09 15.1 53.19 8.48E+08 63.4 52.07 8.47E+08 4.4 52.13 8.48E+08 4.2

matrix_mult_1 160K 159K 75.09 2.28E+09 70.1 73.43 2.27E+09 188.9 81.84 2.13E+09 5.4 81.63 2.13E+09 5.4
matrix_mult_2 160K 159K 74.54 2.32E+09 76.9 73.24 2.25E+09 204.0 76.88 2.16E+09 5.6 77.37 2.16E+09 5.5
matrix_mult_a 154K 154K 50.09 3.68E+09 92.2 48.62 3.33E+09 215.6 48.09 3.03E+09 6.6 48.18 3.03E+09 7.2
superblue12 1293K 1293K 80.23 3.82E+10 867.4 78.84 3.48E+10 16369 93.17 2.61E+10 35.0 92.90 2.58E+10 34.6 q&e
superblue14 634k 620k 61.55 2.54E+10 497.5 67.76 2.49E+10 7153.9 63.18 2.31E+10 20.1 63.18 2.30E+10 19.3
superblue19 522K 512K 64.38 1.83E+10 237.5 64.55 1.71E+10 7788.7 61.95 1.57E+10 15.7 61.95 1.57E+10 15.7

ratio 1.038 1.170 13.887 0.971 1.072 37.838 1.033 1.014 1.019 1.000 1.000 1.000

Table 3: HPWL and runtime (seconds) comparison with
DREAMPlace [25] on ISPD 2019 and ICCAD 2014 benchmark
suites. ispd19_test_5 has 3 fence regions which cannot be
handled by DREAMPlace [25]. HPWL after detailed placement
and runtime are reported by the evaluator in DREAMPlace.
Diverged (div.) benchmarks are stopped after reaching the
maximum iteration of DREAMPlace. q&e means quadratic
penalty and entropy injection are triggered. Benchmarks
that do not trigger our self-adaptive robust optimization
mechanism have the same results in two methods.

Design #cell #net DREAMPlace [25] Ours
HPWL RT HPWL RT

ispd19test1 9K 3K 8.20E+07 5.63(div.) 8.08E+07 4.21 q&e
ispd19test2 73K 72K 3.58E+09 5.77 3.51E+09 5.70 q&e
ispd19test3 8K 9K 1.41E+08 3.77 1.40E+08 4.17 q&e
ispd19test4 151K 146K 3.41E+09 6.42 3.41E+09 6.42
ispd19test5 29K 29K - - 6.30E+08 12.10
ispd19test6 181K 180K 8.96E+09 7.87 8.94E+09 7.68 q&e
ispd19test7 362K 359K 1.78E+10 11.42 1.76E+10 11.92 q&e
ispd19test8 543K 538K 2.68E+10 15.76 2.67E+10 15.12 q&e
ispd19test9 903K 895K 4.12E+10 32.36 4.13E+10 20.39 q&e
ispd19test10 903K 895K 4.20E+10 27.38 4.19E+10 21.90 q&e
iccad14b19 219K 219K 2.63E+08 7.03 2.61E+08 6.91 q&e
iccad14leon2 795K 795K 2.32E+09 34.8 2.32E+09 30.02 q&e

iccad14leon3mp 649K 649K 1.07E+09 25.65 1.07E+09 21.77 q&e
iccad14edit_dist 133K 133K 3.98E+08 6.18 3.98E+08 6.18

iccad14matrix_mult 155K 159K 2.38E+08 5.64 2.38E+08 5.64
iccad14netcard 959K 961K 2.80E+09 35.04(div.) 2.69E+09 29.25 q&e
iccad14vga_lcd 165K 165K 2.70E+08 7.57 2.68E+08 7.20 q&e

ratio 1.007 1.108 1.000 1.000

turn on corresponding techniques to help accelerate and stabilize op-
timization. For example, on mgc_fft_1 benchmark, the target den-
sity limit is equal to the native logic utilization 83.5%. Such a highly
restricted density constraint leads to divergence in DREAMPlace.
Our window-based divergence detector detects that the normalized
overflow increases too much compared to the best-recorded over-
flow in the 619-th iteration while the degrading trend of HPWL also
exceeds the predefined threshold, i.e., 𝑂𝑉𝐹𝐿100 . Thus it immediately
rolls back to the 613-th iteration with the lowest overflow, which
prevents further quality degradation or prolonged runtime.

On ISPD 2019 and ICCAD 2014 benchmarks, our method boosts
the runtime by 10.8% compared to DREAMPlace [25], while improv-
ing the detailed placement HPWL by an average of 0.7%. 13 bench-
marks marked as q&e in Table 2 indicate that our self-adaptive
quadratic penalty and entropy injection mechanisms are triggered
to accelerate the cell spreading in the early optimization stage.

5 CONCLUSIONS
In this work, we propose a flexible and robust VLSI placer that can
handle fence region constraints with better solution quality and
more stable convergence. We propose a multi-electrostatics based
method to honor fence region constraints in the electrostatic-based
placement algorithm. Our field isolation and virtual blockage in-
sertion techniques enable efficient region-aware placement with
a global view that leads to better solution quality than previous
methods. We adopt a quadratic density penalty and individual elec-
tric density controlling methods to accelerate and stabilize cell
spreading for each region. A region-aware legalizer is proposed to
efficiently legalize the solution under region constraints. Besides, a
self-adaptive rollback and entropy injection mechanism is proposed
to boost the robustness and solution quality of the nonconvex op-
timization. Experimental results demonstrate that on ISPD 2015
benchmarks we can achieve >13% and >11% HPWL improvement
and top5 overflow reduction compared to previous region-aware
placers Eh?Placer [4] and NTUplace4dr [3]. On ISPD 2019 and
ICCAD 2014, we can achieve ∼1% and ∼3% improvement in HPWL
and overflow over DREAMPlace [25] with more stable convergence.

ACKNOWLEDGMENTS
The authors would like to thank Prof. Yao-Wen Chang at National
Taiwan University for preparing the binary of NTUplace4dr [3]
and Mr. Nima Karimpour Darav from Efinix Inc. for preparing
the Eh?Placer binary [4]. This project is supported in part by the
National Key Research and Development Program of China (No.
2019YFB2205000).

DREAMPlace 3.0: Multi-Electrostatics Based Robust VLSI Placement with Region Constraints ICCAD ’20, November 2–5, 2020, Virtual Event, USA

REFERENCES
[1] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “ISPD 2015 Benchmarks

with Fence Regions and Routing Blockages for Detailed-Routing-Driven Place-
ment,” in Proc. ISPD, 2015, p. 157–164.

[2] I. L. Markov, J. Hu, and M. Kim, “Progress and Challenges in VLSI Placement
Research,” Proceedings of the IEEE, vol. 103, no. 11, pp. 1985–2003, 2015.

[3] C. Huang, H. Lee, B. Lin, S. Yang, C. Chang, S. Chen, Y. Chang, T. Chen, and
I. Bustany, “NTUplace4dr: A detailed-routing-driven placer for mixed-size circuit
designs with technology and region constraints,” IEEE TCAD, vol. 37, no. 3, pp.
669–681, 2018.

[4] N. K. Darav, A. Kennings, A. F. Tabrizi, D. Westwick, and L. Behjat, “Eh?Placer:
A high-performance modern technology-driven placer,” ACM TODAES, vol. 21,
no. 3, Apr. 2016.

[5] W. Chow, J. Kuang, P. Tu, and E. F. Y. Young, “Fence-aware detailed-routability
driven placement,” in Proc. SLIP, 2017, pp. 1–7.

[6] A. B. Kahng, S. Reda, and Q. Wang, “Architecture and details of a high quality,
large-scale analytical placer,” in Proc. ICCAD, 2005, pp. 891–898.

[7] T. Chan, J. Cong, and K. Sze, “Multilevel generalized force-directed method for
circuit placement,” in Proc. ISPD, 2005, pp. 185–192.

[8] A. B. Kahng and Q. Wang, “A faster implementation of APlace,” in Proc. ISPD,
2006, pp. 218–220.

[9] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang, “NTUplace3:
An analytical placer for large-scale mixed-size designs with preplaced blocks and
density constraints,” IEEE TCAD, vol. 27, no. 7, pp. 1228–1240, 2008.

[10] M.-K. Hsu, Y.-F. Chen, C.-C. Huang, S. Chou, T.-H. Lin, T.-C. Chen, and Y.-
W. Chang, “NTUplace4h: A novel routability-driven placement algorithm for
hierarchical mixed-size circuit designs,” IEEE TCAD, vol. 33, no. 12, pp. 1914–1927,
2014.

[11] C. Cheng, A. B. Kahng, I. Kang, and L. Wang, “RePlAce: Advancing solution
quality and routability validation in global placement,” IEEE TCAD, vol. 38, no. 9,
pp. 1717–1730, 2019.

[12] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0: A fast multilevel quadratic
placement algorithm with placement congestion control,” in Proc. ASPDAC, 2007,
pp. 135–140.

[13] X. He, T. Huang, L. Xiao, H. Tian, and E. F. Y. Young, “Ripple: A robust and
effective routability-driven placer,” IEEE TCAD, vol. 32, no. 10, pp. 1546–1556,
2013.

[14] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev, “POLAR: placement
based on novel rough legalization and refinement,” in Proc. ICCAD, 2013, pp.
357–362.

[15] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev, “POLAR: A high
performance mixed-size wirelengh-driven placer with density constraints,” IEEE
TCAD, vol. 34, no. 3, pp. 447–459, 2015.

[16] M.-C. Kim, D.-J. Lee, and I. L. Markov, “SimPL: An effective placement algorithm,”
IEEE TCAD, vol. 31, no. 1, pp. 50–60, 2012.

[17] M.-C. Kim, N. Viswanathan, C. J. Alpert, I. L. Markov, and S. Ramji, “MAPLE:
multilevel adaptive placement for mixed-size designs,” in Proc. ISPD, 2012, pp.
193–200.

[18] T. Chen, Z. Jiang, T. Hsu, H. Chen, and Y. Chang, “NTUplace3: An Analytical
Placer for Large-Scale Mixed-Size Designs With Preplaced Blocks and Density
Constraints,” IEEE TCAD, vol. 27, no. 7, pp. 1228–1240, 2008.

[19] J. Chen, L. Yang, Z. Peng, W. Zhu, and Y. Chang, “Novel proximal group ADMM
for placement considering fogging and proximity effects,” in Proc. ICCAD, 2018,
p. 3.

[20] Z. Zhu, J. Chen, Z. Peng, W. Zhu, and Y. Chang, “Generalized augmented la-
grangian and its applications to VLSI global placement,” in Proc. DAC, 2018, pp.
149:1–149:6.

[21] W. Zhu, Z. Huang, J. Chen, and Y.-W. Chang, “Analytical solution of poisson’s
equation and its application to vlsi global placement,” in Proc. ICCAD, 2018.

[22] J. Lu, P. Chen, C. Chang, L. Sha, D. Huang, C. Teng, and C. Cheng, “ePlace:
Electrostatics-Based Placement using Fast Fourier Transform and Nesterov’s
Method,” ACM TODAES, vol. 20, no. 2, p. 17, 2015.

[23] J. Lu, H. Zhuang, P. Chen, H. Chang, C. Chang, Y. Wong, L. Sha, D. Huang, Y. Luo,
C. Teng, and C. Cheng, “eplace-ms: Electrostatics-based placement for mixed-size
circuits,” IEEE TCAD, vol. 34, no. 5, pp. 685–698, 2015.

[24] C. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing solution
quality and routability validation in global placement,” IEEE TCAD, vol. 38, no. 9,
pp. 1717–1730, 2019.

[25] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan, “DREAMPlace: Deep
Learning Toolkit-Enabled GPU Acceleration for Modern VLSI Placement,” in
Proc. DAC, 2019.

[26] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z. Pan, “DREAM-
Place: Deep Learning Toolkit-Enabled GPU Acceleration for Modern VLSI Place-
ment,” IEEE TCAD, pp. 1–1, 2020.

[27] S. Dolgov, A. Volkov, L. Wang, and B. Xu, “2019 CAD Contest: LEF/DEF Based
Global Routing,” in Proc. ICCAD, 2019, pp. 1–4.

[28] M. Hsu, Y. Chang, and V. Balabanov, “TSV-aware analytical placement for 3D IC
designs,” in Proc. DAC, 2011, pp. 664–669.

[29] W. Li, Y. Lin, and D. Z. Pan, “elfPlace: Electrostatics-based Placement for Large-
Scale Heterogeneous FPGAs,” in Proc. ICCAD, 2019, pp. 1–8.

[30] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: Fast legalization of
standard cell circuits with minimal movement,” in Proc. ISPD, 2008, p. 47–53.

[31] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, “How to escape saddle
points efficiently,” in Proc. ICML, 2017, p. 1724–1732.

[32] K. Dai,W. Liu, and Y. Li, “NCTU-GR: Efficient simulated evolution-based rerouting
and congestion-relaxed layer assignment on 3-d global routing,” IEEE TVLSI,
vol. 20, no. 3, pp. 459–472, 2012.

[33] M. Kim, J. Huj, and N. Viswanathan, “ICCAD-2014 CAD contest in incremen-
tal timing-driven placement and benchmark suite: Special session paper: CAD
contest,” in Proc. ICCAD, 2014, pp. 361–366.

[34] Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Z. Pan, “ABCDPlace: Accelerated
Batch-based Concurrent Detailed Placement on Multi-threaded CPUs and GPUs,”
IEEE TCAD, pp. 1–1, 2020.

