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Abstract— Optical phase change material (PCM) has emerged
promising to enable photonic in-memory neurocomputing in
optical neural network (ONN) designs. However, massive pho-
tonic tensor core (PTC) reuse is required to implement large
matrix multiplication due to the limited single-core scale. The
resultant large number of PCM writes during inference incurs
serious dynamic energy costs and overwhelms the fragile PCM
with limited write endurance, causing the severe aging issue.
Moreover, the aged PCM would distort the stored value and
significantly degrade the reliability of PTC. In this work, we
propose a holistic solution, ELight, to tackle both the aging
issue and the post-aging reliability issue, where a proactive aging-
aware optimization framework minimizes the overall PCM write
cost and a post-aging tolerance scheme overcomes the effect of
aged PCM. Specifically, in the aging-aware optimization part, we
propose write-aware training to encourage the similarity among
weight blocks and combine it with a post-training optimization
technique to reduce programming efforts by eliminating redun-
dant writes. Next, an efficient group-wise row-based weight-PTC
remapping scheme is introduced to tolerate the reprogramma-
bility degradation due to the aged PCM. Experiments show that
ELight can achieve over 20× reductions in the total number
of write operations and dynamic energy cost with comparable
accuracy. Moreover, ELight can guarantee significant accuracy
recovery under the aged PCM within photonic memories. With
our ELight, photonic in-memory neurocomputing will step
forward towards practical applications in machine learning with
order-of-magnitude longer lifetime, lower programming energy
cost, and significant resilience against PCM aging effects.

I. INTRODUCTION

AS Moore’s Law winds down, it becomes challenging for
conventional electrical computers to win in an arms race

with the massively growing computation demands of machine
learning applications. In recent years, optical neural networks
(ONNs) [1]–[12] has been demonstrated as a paradigm shift in
efficient neurocomputing due to its traits of sub-nanosecond
latency, ultra-high energy efficiency, and ultra-high band-
width. Recent work [13]–[15] demonstrates that phase change
material (PCM) can be used to build photonic tensor core
(PTC) for optical in-memory matrix multiplication. PCM
can undergo nonvolatile modulation of optical properties as
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Fig. 1: (a) Multi-bit photonic memory cell based on PCM wires.
(b) Accuracy drop of models under a fixed ratio of aged cells.

a weight encoding mechanism. In-memory multiplication is
implemented with near-zero static power by shining light
through waveguides integrated with configured PCMs, where
light-matter interactions will change the amount of transmitted
light passively. Moreover, the broadband transmission of PCM
enables massive computing parallelism with wavelength-
division multiplexing (WDM) techniques, With the above
superiority, PCM-based ONN designs open a new pathway
towards efficient in-memory neurocomputing via optics.

However, before PCM-based photonic in-memory neuro-
computing can make a truly viable efficient inference acceler-
ation, there are still practical barriers that lie ahead. Firstly, the
supported bit-width on the current PCM cell designs remains
to be limited. In [13], a reasonable implementation of b-bit
PCM cell is proposed for PTC with low programming com-
plexity and demonstrated 4∼5-bit data imprint, where 2b−1
identical PCM wires are patterned on the same waveguide as
shown in Fig. 1a. Each PCM wire is electrothermally switched
to represent binary phase states by complete amorphous-
crystalline phase transition, thus presenting total 2b nonlinear
transmission levels. To suit the unique transmissivity distri-
bution, a specialized quantization strategy is in high demand
to save the ONN accuracy on the above low-precision PCM-
based PTC.

Besides, the potential frequent weight reprogramming dur-
ing inference also raises critical issues in PCM-based photonic
in-memory computing. Massive reuse of PTCs is required due
to the limited scale of PTC compared to the weight matrix,
e.g., a 64×64 PTC is already quite large while the largest con-
volutional layer in ResNet-18 [16] can have a 512×512×3×3
weight matrix. However, the endurance of PCM is a limiting
factor, ranging from 106 to 108 [17]. The resultant massive
weight updates in PTCs potentially threaten PCM wires at a
high risk of over-utilization, i.e., the aging issue. Once PCM
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wires are aged, the physical value will deviate from the desired
value as the loss of reprogrammability, causing post-aging
reliability issue and severe accuracy drop as shown in Fig. 1b.
Moreover, the massive re-writes incur a non-trivial dynamic
energy cost, which dilutes the energy efficiency benefits from
PCM. The above issues are related to two key metrics: (1) The
total number of write operations to the PCM wires (# total
writes); (2) The maximum number of write operations over
a single PCM wire (# max writes). Dedicated optimization
mechanisms are, therefore, needed to reduce the two metrics
as a proactive solution to mitigate aging issue. To further
prolong the executing lifetime of PTCs, a post-aging tolerance
method is demanded as well to recover the accuracy drop
when ONN is mapped onto the unreliable aged PTCs.

In this work, we propose a holistic solution, ELight, to
enable efficient, aging-resilient, and life-prolonging photonic
in-memory neurocomputing, including a proactive aging-
aware optimization framework and a post-aging tolerance
scheme. Based on an augmented redundant write elimination
strategy, we devote ourselves to trimming down # total
writes and # max writes by eliminating redundant writes on
PCM wires during weight updates, and thus mitigate aging
issue. Considering the block pattern of weight reloading in
PTCs, a write-aware training method is first proposed to
orchestrate the higher weight similarity among weight blocks
to increase the eliminable redundant writes. Then the post-
training optimization is applied to reduce write operations
further. Besides the above techniques, to capacitate resilience
against already-aged PCM wires, we extend ELight [18]
with an efficient post-aging tolerance scheme, the group-wise
row-based weight-PTC remapping, to preserve the accuracy
of ONN with marginal overhead. The main contributions of
this paper are listed as follows.

• Distribution-Aware Quantization scheme is introduced
to fit the modeled unique transmissivity distribution with
reduced weight encoding errors on PCM cells.

• Write-Aware Training is designed to boost block-wise
weight similarity with negligible accuracy effect so as
to increase eliminable redundant write operations during
weight updates.

• Post-Training Optimization is proposed to further cut
down redundant writes via one-shot fine-grained reorder-
ing, without changing the model output.

• Group-wise Row-based Remapping is proposed to
tolerate aged PCM wires within PTCs via re-configuring
weight-PTC row mapping in a group-wise manner, which
saves ONN accuracy with marginal hardware overhead.

• To the best of our knowledge, this is the first work
that handles the aging issue of optical PCM in photonic
neural engines, achieving over 20× reduction in the
total number of reprogramming operations and dynamic
energy cost during inference. Our extended post-aging
tolerance scheme further enhances the reliability of
the novel in-memory neurocomputing paradigm under
aged PCM wires with significant accuracy recovering.
The augmented version of ELight successfully pro-
vides a holistic solution to tackle both aging issue

and post-aging issue in photonic in-memory neurocom-
puting. With ELight, PCM-based photonic in-memory
neurocomputing will benefit from an order-of-magnitude
longer lifetime.

The rest of this paper is organized as follows. Section II in-
troduces the basics of PCM and photonic tensor core. Section
III details the efforts to model the transmissivity distribution
of photonic memory cells, followed by a distribution-aware
quantization to reduce weight encoding errors. Section IV
discusses details of our proposed aging-aware optimization
framework to obtain aging-aware models. Section V describes
our extended post-aging tolerance scheme for aged PCM
wires. Section VI evaluates our proposed methods. VIII
concludes this paper.

II. PRELIMINARIES

This section introduces the basics of phase change material,
the architecture of photonic tensor core, and barriers of current
PCM-based ONNs towards practical deployment.

A. Basics of Phase Change Material (PCM)
As a promising memristive device, phase change material

(PCM) has emerged as an attractive device for photonic
in-memory computing. The optical characteristics of PCM
change drastically when undergoing an amorphous-crystalline
phase transition, where high-light-absorption crystalline (c)
state and low-light-absorption amorphous (a) state represent
the logical ‘0’ and logical ‘1’, respectively. The programmable
non-volatile states underpin PCM’s potential to perform ultra-
fast in-memory multiplication [13], [14]. By shining light
through the waveguide integrated with PCM cells on top
and configuring the transmission factor t via switching PCM
states, the transmitted optical power can be modulated as
Pout = t · Pin such that the scalar multiplication can be
implemented. Yet, high-precision data imprint is not supported
in current PCM cell designs with a limited number of realized
distinct transmission levels. In [13], an implementation of b-
bit PCM cells is proposed for photonic in-memory neurocom-
puting, where 2b−1 binary PCM wires are patterned on one
waveguide to promise 2b transmission levels. 4∼5-bit storage
ability is validated in [13]. Considering the programming
complexity and binary photonic PCM devices’ practicality,
we will focus on this PCM cell design in this paper.

However, the lifetime of PCM in photonic devices re-
mains to be improved, where a maximum of ∼ 108 total
reprogramming times [17], [19] is measured. Frequent value
updating will over-utilize PCM, lose its reprogrammability,
and reduce its reliability, thus shortening the lifetime of PCM.
Moreover, photonic PCM failure mechanisms have not been
characterized yet [17], impeding optimization techniques from
the perspective of failure rules. Therefore, to boost the lifetime
of PCM, a viable direction is to reduce write operations to the
PCM.

B. Architecture of Photonic Tensor Core
Recent work [13], [14] demonstrate the implementation of

photonic tensor cores for optical in-memory matrix multipli-
cation, i.e, Y = WX + b. Both utilize the photonic PCM
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Fig. 2: The architecture of photonic tensor cores based on phase-change material.

arrays’ storage and light interactions capability, with W being
encoded in the PCM states.

Consider the matrix-matrix multiplication (MM) between
the weight block W ∈ Rk×k and the input matrix X ∈ Rk×m.
Fig. 2 illustrates one architecture of PCM-based PTC [13].
Each PCM array carries out the matrix-vector multiplication
(MVM) and each PTC duplicates PCM array m times to
achieve MM. An input laser and an on-chip frequency comb
work together to generate light with multiple wavelengths
(λ0, λ1, · · · ). A WDM multiplexer is then used to evenly
distribute the light into m rows. Each row consists of a series
of narrowband micro-ring modulators to encode one column
of the input matrix X in the power of the optical signals. Then,
a PCM array with k rows and k columns stores the weight
block and processes the MVM between encoded W and one
column of X . Concretely, in the i-th rail, the inputs are filtered
by the on-resonance micro-rings based on wavelength and
weighted via light-matter interaction with the PCM. Photo-
detectors are put at the end of the drop port to accumulate
the intensity of the WDM optical signals, i.e., the weighted
inputs, and generate the desired result Yim =

∑k
j WijXjm.

In Fig. 2, the b-bit PCM memory cell is used to store
weights in a non-volatile way. 2b−1 binary PCM wires
are placed on the top of the same waveguide to allow 2b

transmission levels, thus enabling b-bit weight storage. The
PCM wires within the photonic memory cell are selectively
switched between crystalline and amorphous phase states to
imprint the desired value. The a-c and c-a transition of PCM
wires can be achieved via electrothermal heating in parallel by
simultaneously sending electrical pulses to individual thermal
heaters. For example, to encode ‘1100’ in a 4-bit photonic
memory cell, twelve out of fifteen PCM wires are randomly
chosen to be set to the high-light-transmission amorphous
state while the others are programmed to crystalline state.

C. Barriers in Practical Deployment of PCM-based ONNs

Photonic in-memory neurocomputing has gained much
attention as a promising next-generation platform for ma-
chine learning (ML) workloads. However, several practical
challenges still lie ahead towards real applications. First,

the limited programming resolution and unique discretized
transmission levels of PCM-based PTCs call for a specialized
quantization scheme. Besides, the limited scale of PTC cannot
promise the one-shot realization of large matrix multiplica-
tion. Considering the area cost and light loss [14], the scale of
PTC cannot be too large, where a 64×64 PTC is already quite
large. Hence, to implement large matrix multiplication during
inference, massive reuse of PTCs is needed, causing frequent
weight value updates within PTCs. Consequently, PCM wires
with limited endurance are threatened to be over-utilized, thus
shortening the executing lifetime of the computing engine
as a key limiting factor. Moreover, massive reprogramming
over PCM incurs significant dynamic power during inference,
raising concerns about PCM’s energy superiority. Previous
works [20]–[23] on emerging neuromorphic computing sys-
tems such as ReRAM mainly focus on minimizing frequent
weight updates when on-chip training is performed. In this
work, aware of the curse of the limited PTC scale, we keep
our emphasis on the potential frequent weight reprogramming
during the inference process, which plagues the lifetime of
photonic in-memory neurocomputing.

To tackle the above issues, two key metrics are desired to
be optimized. The total number of write operations to PCM (#
total writes) reflects the averaged degree of utilization of PCM
wires and the dynamic energy cost. The maximum number
of wire write operations over a single photonic cell (# max
writes) can represent the status of the most over-utilized mem-
ory cell. Redundant Write Elimination (RWE) strategy [24]–
[27] is widely used as a basic optimization scheme during
PCM-based Phase Change Memory programming to reduce
the number of write operations. Since data are represented by
the binary-state PCM wires within photonic memory cells,
in this paper, we augment the RWE strategy in a more fine-
grained granularity by identifying identical writes over PCM
wires and eliminating them. If we assume that the PTC is
totally unusable after a major portion of PCM wires wore
out, in this case, suppose the write endurance of PCM wire
is 1 × 107 and the averaged degree of utilization of PCM
wires is 103 per inference pass for a given model. delete “In
that case” If the PTC is employed to perform 102 inference
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tasks per day as the edge device, the lifetime of PTC can be
prolonged from 100 days to 2000 days if we can reduce the
required write operations by 20×.

Other nonideal defects such as the device-to-device varia-
tion and temporal drift are also critical challenges for PCM-
based ONNs. However, related models and mechanisms have
not been well-characterized in photonic PCM devices [17].
We are interested in solving these challenges in the future,
while in this paper, we keep our primary emphasis on the
endurance issue of PCM in PTCs.

III. PROPOSED DISTRIBUTION-AWARE QUANTIZATION
SCHEME

In this section, we give out a dedicated distribution-aware
quantization scheme based on the analysis of transmissivity
distribution of the adopted b-bit PCM memory cell design, to
reduce weight encoding errors.

A. Transmission Model of Multi-Level PCM Memory Cell

As discussed above, the light transmissivity of a b-bit
photonic memory cell is determined by the phase states of
2b−1 PCM wires. Assuming that transmission level i refers
to the transmissivity when i wires in the photonic memory
cell are programmed to c state while the others are written
to a state, its extinction ratio (ER) is computed as the ratio
of the transmitted optical power in level i and level 0, i.e.,
10 log10(

Pi

P0
). As demonstrated in [13], the ER uniformly

increases as a function of i with a step ∆e. Given that the
transmitted optical power is the product of the transmission
factor and input light power, ER can be further expressed as

10 log10(
ti · Pin

t0 · Pin
) = 10 log10(

t0 · Pin

t0 · Pin
) + i∆e. (1)

where ti is the transmission factor in the i-th transmission
level. We can further derive ti as

ti = t0 · 10
1
10

∆e×i = t0 × ci, c = 10
1
10

∆e. (2)

Here, c represents the percentage of light power transmitted
through one PCM wire, which is less than 1. The 0-th
transmission level corresponds to all wires being in a (logic
‘1’) state, where t0 is approximately 1 [13].

Hence, the distribution of 2b transmission levels of the b-
bit PCM memory cell is finally formulated as an exponential
model,

ti = ci, i = 0, 1, . . . , 2b − 1. (3)

B. Augmented Base-c Quantization

To accomplish computing within PCM-based photonic
memories, we first need to effectively map full-precision
weights w to the discrete transmission levels of memory cells
with low encoding error. However, traditional uniform quan-
tization with a uniformly divided quantization interval fails to
fit the unique exponential transmissivity distribution, which
would cause severe encoding error. Therefore, a dedicated
quantizer q(w, b) is demanded to minimize the error between
the actual value of w and its quantized value ŵ as follows,

min ∥ŵ − w∥22, s.t. ŵ = q(w, b) ∈ Qb, (4)
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Fig. 3: (a) Normalized transmissivity distribution of a 4-bit pho-
tonic memory cell. (b) Computing Root-Mean-Square Error (RMSE)
of matrix multiplication under uniform and our distribution-aware
quantizer.

where b is the bit-width. Qb denotes a set of quantization
levels, i.e., the transmission levels of a b-bit photonic memory
cell.

However, as only positive light transmission can be demon-
strated in PCM, to support full-range weight, we adopt the
positive PTCs and negative PTCs to store the positive and
negative values of weight matrix W , respectively. Then, the
differential photo-detection module will generate balanced
output. Based on the simple but effective weight extension
strategy, each scalar weight w in W is expressed as

w = wpos − wneg. (5)

Here, wpos and wneg are physical values in positive and
negative photonic memory cells, where one is chosen in terms
of the sign of w to store the value of w while the other is
programmed to the lowest light transmission level δ = c2

b−1.
In such manner, the quantization codebook Qb is augmented
with the differential weight encoding mechanism in (5) as
follows,

Qb = {c2
b−1 − δ,±(c2

b−2 − δ), . . . ,±(c0 − δ)}, δ = c2
b−1. (6)

The number of implementable quantization levels in Qb is
almost doubled, which promises a higher model expressivity
under a low-bit quantization scheme.

With the augmented quantization codebook, for w within
[−1, 1], an augmented base-c quantizer is hence proposed to
optimize (4) as

wq = q(w, b) =
sign(w)

s
· (cClip(R(logc(s|w|+δ)), 0, 2b−1) − δ),

(7)
where R(·) is a round function. The quantized value is
transformed into [−1, 1] with the scaling factor s = c0−c2

b−1.
Our augmented base-c quantizer is implemented within a
quantization-aware training procedure [28] to train the PCM-
based ONNs. In the forward pass, the weight w in W are
quantized as

wq = q(
Tanh(w)

max(Tanh(W ))
, b), b > 1. (8)

During the backward propagation, the whole b-bit quanti-
zation process q(w, b) is coarsened as an entirety, where
its gradient gq is estimated by Straight Through Estimation
(STE) [29] as

gq =
∂L
∂W

=
∂L
∂Wq

∂Wq

∂W
=

∂L
∂Wq

. (9)
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The layer input is also discretized by a uniform quantizer in
[30] considering limited on-chip storage.

Fig. 3b depicts the computing root-mean-square errors of
randomly generated 1500 matrix multiplications on different
PTC scales and bit-widths under our proposed distribution-
aware quantization method and traditional uniform quantiza-
tion method. Our quantization method achieves significantly
minor computing errors with a better fit for the unique non-
linear transmissivity distribution of photonic memory cells.

IV. PROPOSED AGING-AWARE CO-OPTIMIZATION
FRAMEWORK

In this section, we introduce the proposed aging-aware
optimization framework of ELight to minimize both # total
writes and # max writes. We first illustrate the adopted
augmented redundant write elimination (ARWE) strategy for
PCM wire-level write elimination and formulate the opti-
mization targets. Then we describe the proposed write-aware
training method to encourage the similarity among weight
blocks. At last, a fine-grained reordering method is proposed
to work as a one-shot post-training optimization to further
trim down redundant writes.

A. Problem Formulation

Matrix multiplication operations in convolutional layers
and fully-connected layers are accelerated on PCM-based
PTCs. Especially, to convert convolutions in convolutional
layers into general matrix multiplication (GEMM), an im2col
algorithm [31] is used. Given the limited single photonic
tensor core size, blocking matrix multiplications is adopted
for practical considerations. The weight matrix W ∈ RM×N

is partitioned into P×Q sub-matrices, where each k×k block
can be deployed onto one PTC. Since we have M,N ≫ k,
the number of sub-matrices is quite large. Moreover, when
assigning the set B of sub-matrices to a cluster C of on-chip
PTCs, as the number of photonic tensor cores is limited, one
PTC is assigned with multiple sub-matrices, causing massive
PTC reuse during inference. Here, without loss of generality,
a simple assignment strategy to assign sub-matrices to PTCs
is adopted for the following discussion. To complete the
computation of one layer with P × Q weight sub-matrices,
a cluster of PTCs is dedicated for the MMs, where a row of
weight blocks is assigned to the same PTC. In this way, P
PTCs carry out blocking MM in parallel with shared input. For
instance, suppose that the scale of PTC is 64×64, the weight
matrix of the 5th convolutional layer of VGG8 is partitioned
into a set B with 8× 72 blocks, where each PTC is assigned
with 72 blocks. We assume the data stored in PTC is updated
only after all the block MMs on the current stored block are
completed such that reprogramming cost are reduced. Note
that our proposed methods in this article can work with other
assignment schemes.

To trim down write operations during weight updates, we
propose an augmented redundant write elimination (ARWE)
strategy in a more fine-grained way than the vanilla RWE
strategy [24]. As data are represented by the binary-state PCM
wires within photonic memories, we identify the identical
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Fig. 4: The illustration of writing multiple weight blocks in the
same PTC with redundant wire writes elimination. Each PCM wire
within 3-bit memory is in a(1) or c(0) state to demonstrate quanti-
zation levels in -7∼+7. Wire-level redundant writes are excluded to
reduce # writes.

wire-level writes first and then exclude these identical parts
during reprogramming. Concretely, instead of directly clean-
ing the old value and writing the new data, we preserve the
current states of PCM wires at the largest extent and only
perturb the smallest number of wires to demonstrate desired
value. For a clear illustration of the ARWE strategy, Fig. 4
shows one example of writing a sequence of weight blocks
into 3-bit PTCs. One positive photonic tensor core and one
negative photonic tensor core are used together to demonstrate
full-range weights. For example, to write transmission level
+7 into the memory cell with a stored +5, two c-state PCM
wires in the positive PTC are re-written to a states (logical
‘0’→logical ‘1’) such that the smallest number of writes is
achieved. Besides, to minimize the influence of temporal drift,
the ARWE strategy is only adopted within the execution cycle
of one layer. When implementing computations for the next
layer, we first initialize all PTCs by setting all PCM wires to
c state and then write the next layer’s weights into photonic
memories. To program weights based on the ARWE strategy,
we need to compare the new value and the original value
to identify identical parts. Instead of detecting stored value
in the RWE strategy [24]–[27], since we exactly know the
programming profile of each memory cell, i.e., the binary state
of each PCM wire within the memory cell, we choose to store
the state of PCM wires at the current time to help determine
the programming solution for the next time. The required on-
chip memory overhead is acceptable given the limited number
of on-chip PTCs, the limited scale of single PTC, and the
limited number of PCM wires within PCM memory cells.

Thus, considering write cost in both positive and negative
PTCs, the number of writes (WT) between two b-bit numbers
w

′
and w is computed as follows,

WT (w
′
, w) = |l+(w

′
)− l+(w)|+ |l−(w

′
)− l−(w)|, (10)

where l+ and l− denote the transmission levels in positive and
negative PTCs, respectively. The absolute value of l+ and l−

also represent the number of a-state wires out of 2b−1 wires
in the corresponding photonic memory cell, which can be

5

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3180969

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 05,2022 at 20:29:04 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Layer-wise statistics of writes of 5-bit VGG8 model.
Layer 2 Layer 3 Layer 4 Layer 5

# total writes 1.14×106 4.87×106 1.66×107 3.26×107

# max writes 294 534 914 1425

(a)

w1 w2 w3 w4 w5 w6 w7

Uncontrolled 
distance 

(b) Controlled
distance

w1 w2 w3 w4 w5 w6 w7

w3 w6 w1 w2 w4 w5 w4

Minimized
level change 

(c)

Fig. 5: An example of constraining a weight sequence starting
from w1. (a) Constrain the distance between neighbors. (b) Constrain
weights around reference value (w1). (c) Sort weights in (b) in an
ascending order.

computed based on (7) as

l+(w) =

{
(2b−1)−Clip(R(logt(s|w|+ δ)), 0, 2b−1), w ≥ 0

0, w < 0

(11)

l−(w) =

{
0, w ≥ 0

Clip(R(logt(s|w|+ δ)), 0, 2b−1)−(2b−1), w < 0
.

(12)

We can further merge the transmission levels l+(w) and
l−(w) to define the combined transmission level l(w) for w
as l+(w)− l−(w), ranging from −(2b − 1) to (2b − 1).

Accordingly, when writing new block A
′

to photonic mem-
ories storing block A, the total number of write operations is
counted as

WT (A
′
,A)=

k∑
i

k∑
j

(|l+(a
′
ij)−l+(aij)|+|l−(a

′
ij)−l−(aij)|).

(13)
where the block size is k × k.

Now consider the number of write operations to implement
one layer (LWT). Assuming the weight matrix W in layer j is
partitioned into a set B of multiple k×k weight sub-matrices,
each PTC t in a cluster C is assigned with nt blocks, i.e.,
{Bt

1, B
t
2, . . . , B

t
nt
}. In our adopted assignment scheme, nt is

equal to the number of blocks in one row of the partitioned
weight matrix. Then, the total number of write operations for
layer j can be derived as

LWT j =

C∑
t

nt∑
i

WT (Bt
i , B

t
i−1), (14)

where PTCs are initialized with all PCM wires being a state
before weight blocks are mapped onto.

Hence, when deploying a model, the total number of
write operations is computed as the sum of layer-wise write
operations, i.e., #total writes =

∑L
j LWT j . To precisely

reflect the status of the most over-utilized memory cell, we
define a layer-wise metric, # max writes, which counts the
maximum number of write operations to one single memory

cell among PTCs. However, although our ARWE strategy
is applied, a significant number of write operations are still
observed. In Table I, the statistics of # total writes and # max
writes for the convolutional layers of 5-bit VGG8 is shown,
where massive write operations challenge the PCM endurance.
Therefore, in the following discussion, several techniques are
introduced to minimize both # total writes and # max writes.

B. Write-Aware Training via Block Matching

When mapping a group of weight blocks, weight blocks
are desired to be similar to introduce more eliminable re-
dundant writes such that the number of write operations can
be reduced, which can be carefully handled during model
training. Figure 5 shows one simple example of minimizing
write operations when a sequence of weights w1, ..., w7 is
programmed to one memory cell. One straightforward method
is to pull the neighboring weights closer, as shown in Fig. 5(a).
Neighboring weights are constrained to be similar by pe-
nalizing large weight distances. Therefore, more redundant
writes are boosted. However, the distance between the largest
and smallest values is not promised to be minimized as no
such constraint is put to constrain the value range of the
weight sequence. This might lead more PCM wires within
photonic memories to be written as photonic memory cells
need to represent a wider value range. Hence, a wise method
is to constrain weights around a reference value such that
the weights are drawn to be similar and the value range is
constrained, shown in Fig. 5(b).

Motivated by this, we propose a write-aware training proce-
dure to boost the block-level weight similarity, shown as Phase
1 in Fig. 6. For weight blocks assigned to the same PTC, we
first average them as the reference block and then penalize
their transmission level distance from the reference block.
Instead of using Eq. (13) to directly optimize the transmission
level difference between blocks in an L1 way, we recalculate
the level difference (LD) between block W and W ref by
using an L2 regularization term as,

LD(W ref ,W ) =

k∑
i

k∑
j

∥l̃+(wref
ij )− l̃+(wij)∥2

+∥l̃−(wref
ij )− l̃−(wij)∥2.

(15)

Here, transmission level l+ and l− are normalized by dividing
αb = 2b−1 to obtain transmission level l̃+ and l̃−, which are
in [−1, 1]. Normalizing level data can help healthy gradient
propagation. The choice of L2 regularization term is to ensure
the model expressivity, where the L2 regularization term
heavily penalizes large value distance, but the slight deviation
is allowed to make weights diverse enough. In this way, not
only # max writes can be optimized through rejecting large
value deviation, but the model expressivity can be mostly
maintained. Using an L1 regularization term in Eq. (13) would
put a hard push to diminish the subtle difference, harm the
model expressivity, and make the model sensitive to the choice
of the regularization strength.
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Fig. 6: Proposed three-phase ELight to enable efficient and aging-resilient photonic in-memory neurocomputing.

With the modified LD, the block matching loss is defined
as

LBM =

L∑
l

G∑
t

ng∑
i

1

βB
LD(Bt

i , B
t
avr). (16)

The weight blocks is assigned to the same group if they are
assigned to the same PTC, where the similarity among them
is explicitly orchestrated. βB is the block size to normalize
the level distance.

By controlling λ, we trade off between the accuracy and
block similarity with the modified loss function,

L = LCE + λLBM , (17)

where LCE is the original cross-entropy loss.
However, there are three issues to optimize LBM . First,

the Round(·) operations in Eq. (11) and Eq. (12) are not
differentiable, making the LBM not differentiable as well.
Second, the gradient approximation through the logarithmic
operations needs to be carefully handled. Third, when comput-
ing LD, level differences in both positive and negative PTCs
are countered, while the physical levels of weights are only
implemented on either positive or negative PTCs based on the
sign. Thus, only those physically implemented levels need to
be involved in gradient evaluation. In other words, only the
gradient from either ∥l̃+(w)− l̃+(δ)∥2 or ∥l̃−(w)− l̃−(δ)∥2
need to be propagated back to compute the gradient w.r.t w
depending on its sign. Considering the above issues, with
straight-through-estimator (STE) to approximate the gradients
for Round(·), the gradient of LBM is propagated back as,

∂LBM

∂W
=

1

βB
(
∂LBM

∂l̃+(W )

dl̃+(W )

dW
⊙M++

∂LBM

∂l̃−(W )

dl̃−(W )

dW
⊙M−),

(18)

where M+ and M− are non-negative and negative masks of
W to extract the needed gradients from dl̃+(W )

dW and dl̃−(W )
dW ,

computed by,

dl̃+(W )

dW

∣∣∣∣
W≥0

=
−d(logt(s|W |+δ))

αbdW
=

−s

αb ln(t)(s|W |+ δ)
, (19)

dl̃−(W )

dW

∣∣∣∣
W<0

=
d(logt(s|W |+ δ))

αbdW
=

−s

αb ln(t)(s|W |+ δ)
. (20)

C. Post-Training Optimization via Fine-grained Reordering

The proposed write-aware training successfully boosts the
similarity among weight blocks and thus helps the redundant
write elimination strategy. However, it doesn’t consider the

mapping order of weight blocks, while the write operations
strongly rely on the mapping order. We still take Fig. 5(b) as
an example. The sum of neighboring distances is not explicitly
optimized as all weights are only limited around one reference
value. There is still room for further optimization by consider-
ing the order. Given the optimized weight sequence, by sorting
the weight sequence in either ascending or descending order,
the sum of neighboring distances can be further reduced,
shown in Fig. 5(c).

Inspired by this heuristic, we propose a fine-grained re-
ordering method to sort weights located at the same position
of weight blocks so as to minimize reprogramming cost,
as they share the same photonic memory cells in PTCs.
The Phase 2 in Fig. 6 illustrates our idea. We perform the
sorting within the group of weight blocks assigned to one
PTC. Weights in the same position are first shaped into 1-
D sequences. Then weight sequences are separately sorted
in either ascending order or descending order. Finally, The
weights are scattered back to weight blocks in the new order.
The above process does not affect the final results as it
is equivalent to swapping columns element-wise. With the
aid of the sorting heuristic, weights are written into PTCs
in an optimized order, i.e., ascending or descending order,
augmenting the write operation reductions with the redundant
write elimination strategy. Moreover, # max writes over a
single photonic memory cell is upper-bounded by the level
range of the mapped weights, i.e., 2b+1−1.

To this end, we propose a joint optimization flow with
write-aware training and one-shot post-training optimization.
# total writes and # max writes can be significantly reduced
to mitigate the aging issue and the tedious programming cost.

V. EXTENDED POST-AGING TOLERANCE SCHEME

To handle the reliability issue against aged PCM wires
within photonic memories, we further equip our framework
ELight with a post-aging tolerance scheme, in which an ef-
ficient row-based weight-PTC remapping method is proposed
to find the unified optimal solution to mapping a group of
weight blocks to defected PTCs with aged PCM wires inside.

A. Post-aging Reliability Issue
As discussed before, the write endurance of PCM in

photonic devices is limited with a measured maximum of
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∼108 write budget [19]. When utilizing the novel PCM-
based PTCs as an inference acceleration engine, frequent
weight updates within photonic memories would wear out
PCM wires. Once PCM is aged, as PCM’s failure mechanisms
and modes in photonic devices are not clear yet [17], the
phase state of aged PCM is complex and hard to analyze. In
this sense, aged PCM wires within photonic memories would
cause uncontrolled drifts from desired stored values, distort in-
memory multiplication results, and thus cause the post-aging
reliability issue of defected PTCs.

As not all PCM wires in the memory cells wear out
simultaneously in the post-aging scheme, we can further
utilize aged photonic memory cells for computing with an
understanding of the transmissivity change within them. In
such wise, the executing lifetime of PTCs can be elongated.
However, the phase state of aged PCM wires is hard to
analyze. One practical way is to tie PCM wires to one known
phase state before being aged, without the need to tediously
detect the exact values of aged PCM wires within photonic
memories. Off-chip computers can record the number of
write operations to each PCM wire within photonic memory
cells and stop reconfiguring the phase state of PCM wires
anymore when approaching their write endurance budget. The
strategy leads to acceptable memory overhead considering
the limited number and scale of available on-chip PTCs.
Moreover, as a typical bell-shaped distribution with more
weights around the mean for neural networks [32], the ability
to demonstrate small values in photonic memories is crucial
to carry out inference tasks. Therefore, regarding the choice
of the fixed phase state for aged PCM wires, setting aged
wires to the low-light-transmission c state is preferred to
ensure the representability of small transmission values. By
doing so, the transmissivity range of aged photonic memory
cells will degrade. Assuming x PCM wires are aged within
one b-bit photonic memory cell, the maximum implementable
transmission factor is degraded to cx based on the derived
model (3). Since the distribution of transmission levels follows
an exponential model, a small number of aged PCM wires
would lead to serious transmissivity range degradation. For
instance, in our adopted design wherein c = 0.872, the
maximum transmission factor is reduced to 0.58 with only 4 of
15 wires being aged in a 4-bit photonic memory cell. Besides,
in higher bit-width photonic memory, the shrink of weight
representability is more severe. Half of the PCM wires in a
6-bit memory cell being aged will lead to the implementable
value range <0.015, while the transmission factor that an aged
4-bit memory cell can provide in the worst case is ∼0.128.

B. Proposed Group-wise Row-based Remapping Method

As discussed above, the upper bound tmax and the lower
bound tmin of transmission factors decrease in the aged
photonic memory cell compared to the fresh cell. The weight
mapping error occurs once the mapped weight value ex-
ceeds the supported transmission range. The deviation of
demonstrated and desired values is the source of computing
error, resulting in model accuracy degradation. Thanks to the
intrinsic error-resilience of neural networks, the self-healing

tfresh,max

Aged cellFresh cell

tfresh.min

taged, max

taged,min

t0 

wmax

wmin

Weight range

Mapping 
deviation

Mapping
deviation

Fig. 7: The mapping deviations when mapping a group of weights
onto one aged photonic memory cell. t0 indicates the transmission
level demonstrating value 0.

characteristic can tolerate minor mapping errors. Thus, we can
save model accuracy on defected PTCs by reconfiguring the
weight-PTC mapping to control mapping errors.

Consider mapping a group B of weight sub-matrices onto
one defected k × k PTC A, where each weight block also
has k rows and k columns. In the proposed write-aware
training, our block-matching mechanism can boost weight
similarity between weight blocks in B. The weight values
at the same position in different blocks are compelled to be
close. Those weights should also follow a similar mapping
deviation when mapping to the same photonic memory cell.
Hence, this unique characteristic provides a chance to jump
out of dedicated optimization for each weight block mapping
but find a unified mapping solution for a group of similar
weight blocks to reduce mapping errors. Inspired by this,
we propose a group-wise row-based weight-PTC remapping
method, shown as Phase 3 in Fig. 6, where each row of a
group of weight blocks with boosted weight similarity are
mapped to one chosen row of defected PTCs based on the
same optimized mapping relationship.

We first derive the row mapping deviation (RMD) metric
to evaluate the mapping error when the m-th row of weight
blocks in B are all mapped onto one specific row p of the PTC
A. Concretely, the weights in the m-th row and n-th column of
different weight blocks in B are correspondingly mapped onto
the photonic memory cell in the p-th row and n-th column
of PTC A, We can extract the value range of those weights
as [Bmn,min, Bmn,max] and the implementable transmission
range at Apn as [Apn,min, Apn,max]. By comparing the two
ranges as demonstrated in Fig. 7, we can define the mapping
deviation metric as the sum of representability gap to indicate
whether the two ranges can match well, which is expressed
as

γ+
mn|Bmn,max −Apn,max|+ γ−

mn|Bmn,min −Apn,min|, (21)

γmax
mn =

{
1, Bmn,max > Apn,max

0, otherwise

γmin
mn =

{
1, Bmn,min < Apn,min

0, otherwise

wherein γmax
mn and γmin

mn indicate whether the range of weights
exceeds the supported range. Actually, this metric aggressively
evaluates the maximum mapping deviation when a group of
weights is mapped onto the same cell. Moreover, it should
be noted that since the proposed sorting heuristic already
sorts weights in ascending or descending order, we can obtain
the value range of weights at each position by fetching the
first block and the last block, denoted as Bmin and Bmax.
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Hence, the RMD can be easily computed without extra sorting
overhead as

RMD(Bm, Ap) =

k∑
i

γmax
mi |Bmi,max −Aqi,max| (22)

+γmin
mi |Bmi,min −Aqi,min|,

where k is the length of the q-th row of PTC A.
Therefore, the remapping scheme can be formulated as the

following optimization problem,

π∗ = argmin

k∑
r

RMD(Bπ(r), Ar). (23)

where the π(r)-th row of all weight blocks in the group B
is mapped to the r-th row of PTC A. We desire to find the
optimized row mapping function π∗ for the k rows of a group
of weight blocks simultaneously to minimize the mapping
deviation.

This remapping problem can be further viewed as a Min-
imum weight perfect matching problem. Specifically, there
are k weight rows to be mapped on k rows of PTC, and
one row of PTC is linked to exactly one row of weight
blocks. Therefore, rows in weight blocks and PTC consist of
two disjoint and independent vertex sets of a bipartite graph,
where each vertex set has k nodes. The mapping deviation
between m-th row of weight blocks and q-th row of PTC,
i.e., RMD(Bm, Aq) in Eq. (22), corresponds to the edge cost.
Hence, our goal is equivalent to finding an optimized perfect
matching π minimizing the total edge cost, i.e., summed
mapping deviation. We adopt Hungarian algorithm [33] to
solve the problem in polynomial time.

Given that the sizes of two bi-partition of vertex sets are
still k, the Minimum weight perfect matching problem size
is exactly the same with one weight block mapping. But
our proposed remapping scheme can obtain the optimized
remapping for a group of weight blocks by solving the
optimization problem once. Hence, tedious efforts to configure
each mapping of weight block are avoided, and efficiency is
much improved.

To support our proposed remapping scheme, we need to
figure out the correct addresses to fetch input data and
weights from memories and write back computing results
to memories, introducing extra index cost of the memory
address. However, we change the weight-PTC mapping in
a group-wise manner instead of dedicating different weight-
PTC mapping relationships for each weight block. Thus, our
method can tackle the post-aging issue at a small address
remapping overhead, which is linear. For example, we divide
the groups following Phase 3 in Fig. 6, where the solid black
lines indicate the remapping relationship. The needed extra
index cost is linear to O(Pk) as the product of the number
of groups and the number of PTC rows.

In this section, an efficient remedy to help defected PTCs
handle the post-aging reliability issue is provided, which
prolongs the executing lifetime of the computing engine from
a different perspective compared to the proactive aging-aware
optimization solution.
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Fig. 8: Quantization evaluation on (a) CNN and (b) VGG models.
F means full-precision models. Q means models with both input and
weight quantization in the same bit-width.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

To demonstrate the effectiveness of our proposed three-
phase framework ELight, extensive experiments are con-
ducted on MNIST [34], FashionMNIST [35], CIFAR-10 and
CIFAR-100 [36] datasets. On the first two tasks, a simple
CNN model is adopted with a configuration C32K4-C32K4-
P5-F64-F10. C32K4 means the convolutional layer has 32
4×4 kernels, P5 is an average pooling layer with output size
5×5, and F64 is a fully-connected (fc) layer with 64 neurons.
On CIFAR-10 and CIFAR-100, VGG8 [37], VGG13 [38]
and ResNet-18 [16] are adopted. The last three FC layers in
VGG8 and VGG13 are replaced with one FC layer to avoid
over-fitting. All models are implemented based on a PyTorch-
centric ONN library torchonn [39]. Our code will be available
at https://github.com/zhuhanqing/ELight. We train the CNN
model for 100 epochs. VGG and ResNet models are trained
for 200 epochs. The SGD optimizer with a momentum of
0.9 is used during training. Regarding the photonic tensor
core size, we assume 16× 16 for the small CNN model and
64 × 64 for VGG and ResNet model. The supported bit-
width in photonic memories is set to 3∼6 bit for practical
consideration. The augmented redundant write elimination
(ARWE) strategy is used as the basic optimization technique.

B. Evaluation of the Distribution-Aware Quantization Scheme

Figure 8 shows the accuracy of simple CNN and VGG
models under 3- to 6-bit quantization with our augmented
base-c quantizer. Our distribution-aware quantization scheme
can successfully fit non-linear transmission level distribution,
enlarges the solution space with double quantization levels,
and achieves high accuracy under low-bit quantization. Under
4- to 6-bit quantization, our proposed method can achieve
small accuracy losses on all tasks. Under 3-bit quantization,
for relatively complicated tasks, i.e., CIFAR-10 and CIFAR-
100, we still get > 85% and > 65% accuracy, respectively.

C. Evaluation of Proposed Aging-Aware Optimization Frame-
work

1) Evaluation of write-aware training via block match-
ing: To figure out the effect of write-aware training, we
visualize the normalized # total writes and accuracy with
various degrees of λ on a 5-bit VGG8 model in Fig. 9a.
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Fig. 9: Evaluation of proposed aging-aware optimization techniques
on 5-bit VGG8. (a) Normalized # total writes and accuracy com-
parison with different λ for write-aware training. (b) Comparison
between # total writes and # max writes of the 5th convolutional
layer.
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Fig. 10: The reduction of # total writes and accuracy of CNN
model trained on (a) MNIST and (b) FashionMNIST under different
bit-width.

With the increase of λ, # total writes decreases as stronger
block similarity leads to more redundant write elimination.
However, too large λ leads to accuracy decline as weights are
penalized for being too identical, making it hard to capture
subtle and diverse features. A sweet point exists by trading
off the accuracy and # total writes, where choosing (λ = 10)
can demonstrate 3.17× reduction in # total writes with 0.44%
accuracy drop. Interestingly, sometimes a proper λ leads to
better accuracy as a regularization mechanism.

2) Evaluation of post-training optimization via fine-grained
reordering: Figure 9b compares # total writes of a 5-bit
VGG8 with/without the write-aware training (M) and fine-
grained reordering (R). The # max writes of the 5-th convolu-
tional layer is also shown. The results provide three insights:
(1) The fine-grained reordering can solely reduce # total
writes a lot with a 10.01× reduction without the help of
extra write-aware training efforts to orchestrate the weights
similarity. (2) The fine-grained reordering can work more
effectively based on the boosted block similarity provided
by the write-aware training, achieving the best of reduction
on # total writes by 22.28×. The results justify our efforts
on the proposed joint aging-aware optimization framework.
(3) Our proposed fine-grained reordering eliminates redundant
writes at most with minimized # max writes, which re-writes
only a small number of PCM wires. Moreover, the proposed
method put a upper-bound on # max writes as the number of
transmission levels, i.e., 2b+1−1.

3) Evaluation on the synergistic optimization framework:
To further testify the effectiveness of the joint optimization
techniques in the optimization framework, we evaluate dif-
ferent models under different bit-width quantization. For the
choice of λ, we choose a sweet point to guarantee the accuracy
within a ∼ 1% drop. Figure 10 demonstrates the accuracy and

the # total writes reduction of the simple CNN model trained
on MNIST and FashionMNIST under 3- to 6-bit quantization,
in which # total writes is significantly reduced with negligible
accuracy drop. Furthermore, Table II and Table III evaluate the
effectiveness of our proposed techniques on VGG8, VGG13
and ResNet-18 trained on CIFAR-10 and CIFAR-100. By
combining the proposed write-aware training and post-training
optimization techniques, the largest reduction on # total writes
and # max writes is achieved, where >20× on # total writes
is observed with less than 1% accuracy degradation. Hence,
our joint optimization framework can work orthogonally and
successfully mitigate the aging issue by largely reducing write
operations.

We also have a more detailed comparison of the reduction
of # total writes and # max writes for each layer of 5-
bit VGG13, as shown in Fig. 11. By combining proposed
aging-aware optimization techniques, for each layer, # total
writes can be reduced by over 7× and # max writes can be
constrained to the smallest number. A large reduction of #
total writes is obtained on the convolutional layers with larger
input and output channels. For those layers, larger weight
redundancy exists with more channels such that the weight
block similarity can be better boosted.

4) Evaluation of power saving: We further verify the
energy efficiency brought by the above optimization meth-
ods. We trace the detailed energy cost of writing weight
block data onto PTCs during the inference process. The a-
c and c-a transition programming pulse profiles are shown
in Table IV. Assuming the resistance of heaters is consistent
during heating, the ratio of write energy cost between a-c
and c-a transition is 40 : 9. As our propose optimization
techniques largely optimize # total writes, the energy cost of
deploying VGG8, VGG13 and ResNet-18 is generally reduced
by over 25× under different bit-widths, as shown in Table II
and Table III. The results prove the ability of our aging-
aware optimization framework to effectively saves dynamic
programming energy cost.

D. Evaluation of Proposed Post-aging Tolerance Scheme

We further evaluate the effectiveness of our proposed
group-wise row-based remapping method to enable post-aging
tolerance against aged PCM wires. In order to emulate the
post-aging status of aged PTCs, we randomly set the number
of aged PCM wires in aged memory cells from 1 to 2b−1. All
statistics are collected by multiple runs with different random
seeds to ensure thorough and unbiased evaluations. Figure 12
illustrates the inference accuracy of VGG8, VGG13, ResNet-
18 under the different ratios of aged memory cells in both
positive and negative PTCs.

Through globally reordering the rows for a group of weights
blocks, on models trained with/without write-aware training,
our method can successfully tolerate aged wires under mod-
erate ratios of aged memory cells in an efficient way, without
dedicated reordering for each block or retraining. Under 4-
and 5-bit, when the ratio of aged memory cells reaches
0.2, it still achieves <10% accuracy degradation on VGG8,
VGG13, and ResNet-18 models. Though the implementable
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TABLE II: Performance of ELight on VGG networks on CIFAR-10 and CIFAR-100 dataset. AC: accuracy change, R: fine-grained reordering.
The # max writes of one largest convolutional layer (conv5 layer for VGG8 and conv8 layer for VGG13) is shown here.

Network Dataset Bitwidth λ Acc(%)/AC # total writes ↓ (×) Energy cost ↓ (×) # max writes
- +R - +R - +R

VGG8 CIFAR-10

3 0 86.71 1 6.52 1 9.27 128 15
8 86.02/-0.69 22.12 46.11 6.63 69.29 14 7

4 0 89.75 1 7.84 1 11.31 401 36
10 89.94/+0.19 3.83 24.45 3.92 35.48 95 19

5 0 90.56 1 10.01 1 14.35 1425 82
10 90.12/-0.44 3.17 22.28 3.20 31.17 494 74

6 0 90.83 1 12.31 1 16.89 4464 180
5 89.88/-0.95 6.82 26.35 7.15 32.48 1560 146

VGG13 CIFAR-100

4 0 70.99 1 9.66 1 13.84 542 39
10 70.44/-0.55 3.54 29.25 3.57 42.02 173 33

5 0 71.73 1 12.06 1 17.29 1771 84
3 71.95/+0.22 2.19 21.93 2.21 31.41 921 55

6 0 71.88 1 14.37 1 17.62 4926 182
3 70.97/-0.91 3.11 22.65 3.19 29.85 3577 156

TABLE III: Performance of ELight on ResNet-18 [16] networks on CIFAR-10 and CIFAR-100 dataset. AC: accuracy change, R: fine-grained
reordering. The # max writes of the largest (last) convolutional layer is shown here.

Network Dataset Bitwidth λ Acc(%)/AC # total writes ↓ (×) Energy cost ↓ (×) # max writes
- +R - +R - +R

ResNet-18 CIFAR-10

4 0 92.75 1 8.16 1 11.59 596 43
10 92.94/+0.19 13.30 65.72 13.72 90.33 53 30

5 0 92.50 1 9.83 1 13.80 1742 86
10 91.92/-0.58 5.44 39.40 5.50 51.83 564 64

6 0 94.07 1 11.27 1 15.13 4989 186
5 92.98/-1.09 15.51 38.42 16.24 41.15 730 140

ResNet-18 CIFAR-100

4 0 71.32 1 8.58 1 12.27 608 40
10 71.01/-0.31 4.86 37.59 4.98 53.11 106 19

5 0 73.11 1 10.06 1 14.15 1846 89
3 72.18/-0.93 2.82 25.41 2.84 35.05 687 53

6 0 72.37 1 11.41 1 15.35 5008 183
2 71.54/-0.64 2.67 21.16 2.71 27.27 3318 145
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Fig. 11: The comparison of # writes and # max writes of each convolutional (conv) and fully-connected (fc) layer for 5-bit VGG13. The
first convolution layer is not shown here as its implementation needs no PTC reuse.
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Fig. 12: The accuracy comparison under different ratios of aged memory cells. T means adopting the proposed tolerating scheme. M means
adopting the write-aware training. (a) 5-bit VGG8 on CIFAR-10. (b) 4-bit VGG13 on CIFAR-100. (c) 5-bit ResNet-18 on CIFAR-10. (d)
6-bit ResNet-18 on CIFAR-100. Error bars represent the ±1 · σ variance for multiple runs.
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TABLE IV: Pulse profiles for a→c and c→a transition [13].

Pulse period(µs) Pulse voltage(V ) # Pulse
a→c 1 5 20
c→a 0.5 15 1

transmission range degradation is much severe in high bit-
width as discussed in Section V-A, under 6-bit, our method
can recover the accuracy with <10% drop when the ratio of
aged memory cells doesn’t exceed 0.15.

Besides, assisted by our proposed write-aware training, our
proposed method demonstrates the best tolerance. Especially,
in Fig. 12c, when half of the PCM memory cells are aged,
the proposed tolerance scheme can raise the accuracy of the
5-bit ResNet-18 trained with write-aware training from ∼20%
to ∼80%. In contrast, the accuracy on the normally trained
5-bit ResNet-18 is only recovered to ∼40%. The superiority
of post-aging tolerance on models trained with write-aware
training is attributed to the constrained value range of weights
induced by the block-matching mechanism. It enables easier
adaption of a sequence of weights to aged PCM memory cells
with a downgraded transmission range.

VII. DISCUSSION ON OTHER NVMS

The emerging in-memory computing paradigm has attracted
widespread attention in the application of neural network ac-
celeration, while limited write endurance lies ahead as a crit-
ical challenge in non-volatile memories (NVM) technologies.
Our methods can not only be applied in our unique photonic
case. Still, they can be applied in other NVM techniques to
reduce the number of write operations if the massive reuse
of processing elements exists during inference execution,
especially with the increasing size and complexity of modern
NN models. Here, we briefly discuss the applicability of our
methods in ReRAM-based in-memory computing.

ReRAM-based chips use multiple single-level cells (SLCs)
or multi-level cells (MLCs) to demonstrate high bit-width
synaptic weights. The binary coding format is used instead
of the unary coding format in our photonic memory case.
Considering a k-bit ReRAM cell, Nq = ⌈n

k ⌉ cells are needed
to represent a n-bit weight, where wq =

∑Nq

i=1 ci2
(i−1)k,

where ci represents the value stored in the i-th ReRAM cell.
Since k usually is smaller than n, e.g., 2-bit and 3-bit MLC
ReRAM cells are typically used, we can still apply redundant
write elimination strategy by reusing identical parts. However,
in binary coding format, the difference between two values
cannot represent the real programming cost. For instance,
with 2-bit MLCs, two cells are needed to store 4-bit weight.
The difference in resistance level between 0100 and 0011 is
one, but we need to program two cells. We need to modify
our methods by replacing the Eq. (10) with the programming
cost based on the binary coding format. Then our write-aware
training method can then be applied to orchestrate the block-
wise weight similarities, followed by our reordering heuristic.
Ideally, only the cells for the least significant bits need to
be frequently reprogrammed with boosted weight similarity,
while heavy write imbalance exists. Other techniques like
swapping need to be integrated to handle the unbalanced

write distribution along with ReRAM cells with different
significance. We are interested in solving the binary encoding
case in our future work. Recently, unary coding of synaptic
weights in ReRAM has been investigated to stand out with
better tolerance to the resistance variations [40]. In this
case, our aging-aware optimization methods can be purely
transferred.

As for the post-aging tolerance scheme, we conduct weight-
PTC remapping based on the collected error information. We
can easily apply this technique in other NVMs if we can
collect the error distribution.

VIII. CONCLUSION

In this work, we propose a holistic solution ELight to
enable efficient and robust photonic in-memory neurocom-
puting with a prolonging lifetime. We first model the non-
linear transmission distribution of PCM-based photonic mem-
ories and propose a dedicated distribution-aware quantization
scheme to reduce weight encoding errors and improve ONN
accuracy on the low-precision PTC. To avoid the aging issue, a
write-aware training method and a post-training optimization
method work jointly to trim down redundant PCM writes.
As a proactive aging-aware optimization framework, our
proposed method significantly reduces the number of total
write operations and the number of write operations for the
most over-utilized memory cell. To further tackle the post-
aging reliability issue, a group-wise row-based remapping
methodology is introduced to recover the accuracy drop
against aged PCM wires by re-configuring weight-PTC row
mapping in an efficient way. Experimental results demonstrate
that the proposed solution can reduce the number of write
operations and energy costs by >20× and show superior
resilience against aged PCM wires. Our ELight can push
photonic in-memory neurocomputing towards practical, long-
life, and robust application in efficient inference acceleration.
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