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Abstract— Optical neural networks (ONNs) are promising
hardware platforms for next-generation artificial intelligence
acceleration with ultra-fast speed and low energy consumption.
However, previous ONN designs are bounded by one multiply-
accumulate operation per device, showing unsatisfying scala-
bility. In this work, we propose a scalable ONN architecture,
dubbed SqueezeLight. We propose a nonlinear optical neuron
based on multi-operand ring resonators (MORRs) to squeeze
vector dot-product into a single device with low wavelength
usage and built-in nonlinearity. A block-level squeezing tech-
nique with structured sparsity is exploited to support higher
scalability. We adopt a robustness-aware training algorithm to
guarantee variation tolerance. To enable a truly scalable ONN
architecture, we extend SqueezeLight to a separable optical
CNN architecture that further squeezes in the layer level. Two
orthogonal convolutional layers are mapped to one MORR
array, leading to order-of-magnitude higher software training
scalability. We further explore augmented representability for
SqueezeLight by introducing parametric MORR neurons with
trainable nonlinearity, together with a nonlinearity-aware ini-
tialization method to stabilize convergence. Experimental results
show that SqueezeLight achieves one-order-of-magnitude bet-
ter compactness and efficiency than previous designs with high
fidelity, trainability, and robustness. Our open-source codes are
available at github.com/JeremieMelo/SqueezeLight.

Index Terms—Nanophotonics, neural network hardware, op-
tical computing, scalability, multi-operand micro-ring.

I. INTRODUCTION

DEEP neural networks (DNNs) have demonstrated su-
perior performance on various machine learning tasks.

However, the escalating computation demands of DNNs cast
substantial challenges for traditional electrical digital com-
puters in the post-Moore’s era. With the advances in silicon
photonics, optical neural networks (ONNs) demonstrate com-
pelling potentials for neurocomputing with the intrinsic high
parallelism and speed of light [1]–[4]. Prior ONNs based on
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Mach-Zehnder interferometers (MZIs) have been successfully
demonstrated to achieve matrix multiplication using singular
value decomposition [1]. A slimmed ONN [5] was proposed to
cut down the area cost via a co-design methodology. Butterfly-
style ONNs [6]–[8] demonstrated a more compact design for
neurocomputing in the general frequency domain. Besides
coherent ONNs, incoherent ONNs have been explored to
reduce area cost using micro-ring resonators (MRRs). MRR-
based ONNs [9], [10] have been demonstrated to implement
weight matrices in MRR weight banks leveraging wavelength-
division multiplexing (WDM) techniques.

However, prior state-of-the-art (SoTA) ONN designs still
encounter scalability issues in terms of high area cost. Though
MRR-based ONN is considered one of the most compact
ONNs given the small MRR device sizes [2], [9]–[12], it
reaches the current area lower bound, i.e., one optical device
per multiply-accumulate (MAC) operation. It is technically
challenging to further compactness improvement by using
traditional MRRs. Moreover, the high usage of wavelength
limits the scalability of MRR-ONNs since practical weight
matrix dimensions are far beyond the maximum wavelengths
supported by modern dense WDM (DWDM) techniques, lead-
ing to unsatisfying throughput due to weight bank reuse [12].
MRR-ONNs also encounter robustness concerns under various
noises and variations [12].

To break the current area lower bound of integrated
ONNs, in this work, we propose a novel ONN archi-
tecture that squeezes matrix operations into arrays of
ultra-compact multi-operand micro-ring resonators (MORRs),
dubbed SqueezeLight, to enable scalable, efficient, and
robust optical neurocomputing. We extend SqueezeLight
to a separable optical CNN architecture with trainable MORR
nonlinearity, showing augmented expressiveness and order-of-
magnitude higher software training scalability than the original
MORR-based CNN. The main contributions are as follows,

• Scalability: we explore the analog usage of multi-
operand ring resonators to construct an ultra-compact
ONN architecture with built-in nonlinearity, surpassing
prior integrated ONNs by one order of magnitude in
footprint.

• Efficiency: we employ fine-grained structured pruning in
SqueezeLight for a quadratic efficiency boost.

• Robustness: we propose a sensitivity-aware learning
technique to overcome thermal crosstalk and device vari-

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3189567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 20,2022 at 22:32:35 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/JeremieMelo/SqueezeLight


ations to improve noise resilience.
• Trainability: We extend our DATE version of
SqueezeLight [13] to a novel separable optical
CNN architecture with order-of-magnitude higher
training scalability to support million-parameter ONNs.

• Expressiveness: We explore parametric MORR neurons
with trainable nonlinearity to fortify the advantages of
built-in nonlinearity of SuqeezeLight, leading to an
average of +2.1% accuracy improvement on various
vision recognition tasks.

The remainder of this paper is organized as follows. Sec-
tion II introduces the background for ONN architectures and
multi-operand micro-ring resonators. Section III illustrates
details about SqueezeLight with efficiency and robust-
ness optimization techniques. Section IV analyzes and com-
pares our hardware cost and features with previous ONN
architecture designs. Section V demonstrates an extension
to an MORR-based separable optical CNN with augmented
training scalability and expressiveness. Section VI shows the
optical simulation and reports the experimental results for
SqueezeLight, followed by the conclusion in Section VII.

II. PRELIMINARIES

This section introduces the background knowledge of ONNs
and our motivations.

A. Various Neural Network Designs

Convolutional neural networks (CNNs) learn discrimina-
tive representation via convolution-based linear operations.
Kernelized NNs [14] have shown competitive performance
by replacing convolutions with nonlinear projection kernels.
Various linear and nonlinear convolution variants with better
efficiency and robustness have been proposed, e.g., hyperbolic
tangent convolution [15] and AdderNet [16]. In this work, we
leverage the analog computing power of multi-operand ring
resonators to construct compact optical neurons with built-in
nonlinearity, achieving scalable optical neurocomputing with
competitive model expressiveness.

B. Optical Neural Architectures

Recently, ONN architectures have been rapidly evolving [1],
[2], [5]–[7], [9]–[11], [17], [18]. Coherent ONNs have been
demonstrated to implement computation-intensive general ma-
trix multiplication (GEMM) for ultra-fast NN inference, e.g.,
MZI-based ONNs [1], [5] and FFT-based ONNs [6]–[8].
Incoherent ONNs push the limits in circuit footprint by using
MRR weight banks to implement matrices [9], [10]. However,
the scalability of MRR-based ONNs is inevitably limited
by the size of MRR weight banks and the high usage of
wavelength. To break through the ONN scalability bound,
in this work, we propose a more compact ONN architecture
SqueezeLight with a lower device and wavelength usage.

w0 w1

w2wk-1...

x0 x1

x2xk-1

Input 
Port

Through 
Port

(a)

1550 1553 1555 1557
0.0

0.2

0.4

0.6

0.8

1.0

Wavelength 
Shift

Red-shift

(b)

Fig. 1: (a) All-pass k-operand MORR. (b) Through port light intensity
transmission of an all-pass MORR.

C. Multi-Operand Ring Resonators

A multi-operand logic gate (MOLG) has been experimen-
tally demonstrated to achieve multi-operand Boolean functions
on a single MRR, achieving ultra-compact optical digital
computing [19]. Figure 1(a) shows the structure of an all-pass
multi-operand ring resonator (MORR). Unlike the traditional
MORR with a single controller, an MORR has k active
phase shifters independently controlled by k electrical signals
x, each creating a phase shift ϕi(xi). k phase shifts are
accumulated ϕ =

∑
i ϕi(xi) and lead to a spectrum redshift

∆λ, such that the transmitted light intensity on the through
port changes accordingly. The transmission spectrum of an
MORR is demonstrated in Fig. 1(b). A k-operand all-pass
MORR has the following transfer function,

y = f(ϕ) =

∣∣∣∣ r − ae−jϕ

1− rae−jϕ

∣∣∣∣2d, ϕ =

k−1∑
i=0

ϕi(xi), ϕi(xi) ∝ wix
2
i ,

(1)

where xi is the electrical input voltage, ϕi(·) is the phase
shift response curve of the actuator, ϕ is the accumulated
round-trip phase shift of the MORR, r and a are self-coupling
coefficient and single-pass amplitude transmission factor, and
d, y ∈ [0, 1] are the light intensity on the input port and
through port, respectively. The weight wi on the i-th input
can be encoded into different actuator arm lengths, different
material properties, different input ranges, reconfigurable con-
troller resistances, etc [19]. Instead of using MORR as a digital
logic gate [19], we explore the analog usage of MORRs for
optical neuromorphic computing.

III. PROPOSED OPTICAL NEURAL NETWORK
ARCHITECTURE

In this section, we present design details on the proposed
SqueezeLight shown in Fig. 2 and introduce essential
techniques for scalability and efficiency improvement. We
summarize key notations for SqueezeLight in Table I.

A. MORR-based Nonlinear Neuron

Different from the prior GEMM-based ONN design concept
that only focuses on universal linear operations, we target
unique nonlinear optical neurocomputing based on an ultra-
compact MORR device. Recall that in Eq. (1), we can squeeze
length-k dot-product into the round-trip phase shift of a single
MORR. This dot-product result will be probed by the input
light signal and activated by the MORR nonlinear transmission
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Fig. 2: Proposed MORR-based ONN architecture SqueezeLight with learnable neuron balancing.

TABLE I: Notations used in SqueezeLight.

M ×N Matrix dimensions
P ×Q Grid dimensions in blocking
k Block size
kmax Max #operands in an MORR
k′ #Non-zero weights per row after pruning
w/W Weights/weight matrix
x Input signals
ϕ Round-trip phase shift
ϕ̂ Round-trip phase shift after crosstalk
∆ϕ Phase noise
f(·) Nonlinear y − ϕ transmission
d Learnable balancing factors
G TIA gain
d̃ Balancing factor that absorbs G
γ/Γ Intra-MORR crosstalk coupling factor/matrix

+ + -

+

+ + -

+ -

Block-structured matrix

-

-

-

if      <0, swap rail

+ - -

+

+ - -

- -

M=Pk

+

+

+

N=Qk

Fig. 3: Block-structured matrices with learnable balancing factors.

curve. The idle device will be initially calibrated to the on-
resonance state, where the transmitted light intensity reaches
the minimum. Then, k input voltage control signals will jointly
create a phase shift to modulate the input light intensity.
Hence, we model the MORR neuron as,

y = f(

k−1∑
i=0

ϕi)d ∝ f
( k−1∑

i=0

wix
2
i

)
d, s.t. wi ≥ 0 (2)

where f(·) is the nonlinear y − ϕ transmission curve. Note
that we are justified to assume all MORR nonlinear curves
are identical because the shape of f(·) keeps almost the same
within the practical wavelength range [20].

B. SqueezeLight Architecture

Based on the above MORR neuron, we propose a novel
ONN architecture SqueezeLight shown in Fig. 2. We
assume to map an M × N weight matrix onto this MORR

array. The matrix is partitioned into P × Q sub-matrices
with size of k × k, where P = ⌈(M/k), Q = ⌈(N/k)⌉⌉.
SqueezeLight starts with an on-chip frequency comb to
generate multiple wavelengths (λ0, λ1, · · · ). Then, narrow-
band MRRs are placed as wavelength-specific modulators
D = (d0, · · · , dQ/2−1) ∈ [0, 1] to achieve an adaptive
dynamic MORR transmission range. Modulated probing light
signals are evenly distributed into 2M rows. By placing a
series of MORRs to form an array, we can implement a
nonlinear ONN layer. Theoretically, we need total 2M rows
and Q

2 = N
2k columns to implement an M × N weight

matrix W . The q-th MORR in one row will resonate at the
wavelength λq and apply projection on a segment of length-k
vector as yq = f(

∑k−1
i=0 wqix

2
qi)dq . At the end of the m-th

row, a photo-detector will detect accumulated light intensity
as Im =

∑Q/2−1
q=0 ymq .

Differential Detection for Full-range Weights. Typically,
limited by the physical implementation, the weights are
restricted to be non-negative, which could limit the model
representability. Hence we introduce a differential structure
for full-range outputs and augment the expressiveness with
learnable neuron balancing factors shown in Fig. 2. One
row is halved into two adjacent rows as the positive rail
I+ and negative rail I− respectively. The differential photo-
current structure at the end enables full-range of outputs,
equivalently forcing half weights, i.e., weights on rail I−, to
be non-positive values,

ym = G(I+m − I−m) = G
(Q/2−1∑

q=0

ymq −
Q−1∑

q=Q/2−1

ymq

)
, (3)

where G is the gain of the transimpedance amplifier (TIA),
which can be used to extend the signal range. A direct benefit
from this differential structure is that we can save 50% of
wavelength usage by partitioning one width-Q row into two
width-Q2 rails.
Learnable Balancing Factors. With d=1, all MORRs are
treated with the same importance as they have the same
dynamic range ymq ∈ [0, 1],∀q, which loses the degree
of freedom to assign different weights to different partial
product results. To resolve this, we allow learnable MORR
balancing factors D̃ = {d̃q|d̃q ∈ [−Gmax, Gmax], d̃q =
d̃q (mod) Q

2
, q ∈ [0, Q − 1]} and encode them in the MRRs

at the beginning. Note that the maximum TIA gain Gmax
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expands the implementable range to d̃ ∈[-Gmax, Gmax]. A
column of MORRs share the same balancing factor as they
share the same wavelength. Hence the MORR neuron is
augmented as follows,

ym =

Q−1∑
q=0

f
( k−1∑

i=0

wmqix
2
qi

)
d̃q. (4)

A natural question is how we can achieve full-range balanc-
ing factors as all-pass MRRs can only achieve non-negative
transmission modulation. It turns out that by simply swapping
two MORRs on the opposite rails, one can equivalently realize
a negative factor d̃ < 0 as shown in Fig. 3. This technique
enables a learnable output range for different MORRs and thus
boosts the expressiveness of SqueezeLight.

C. Peripheral Units

We briefly discuss peripheral units, with all system-level
details being omitted since advanced system-level and archi-
tectural innovations in photonic NN accelerators [10], [11] are
mostly applicable to SqueezeLight as well.

1) Normalization: Normalization operations, e.g., Batch-
Norm, can be implemented by the TIA gain and voltage signal
offset with negligible latency overhead.

2) Nonlinear Activation: Since MORR-based neurons have
built-in nonlinearity, extra electrical activations are not re-
quired.

3) Electrical Dataflow: The input signals/weights are
loaded from high-bandwidth SRAM or ultra-fast photonic
racetrack memory banks [21] and converted to analog signals
through electrical digital-to-analog converters (DACs). The
photo-currents are amplified by TIAs. Direct optical-electrical-
optical (O-E-O) conversions will be used to cascade ONN
layers without voltage-to-transmission encoding.

D. Area Reduction via Block-Squeezing

Thanks to the MORR device, we can squeeze a vector
dot-product into one micro-ring. To achieve a quadratically
more compact design, we further squeeze a matrix into one
MORR via a block-squeezing method. Inspired by struc-
tured neural networks that restrict the weight matrix struc-
ture [6], [22] for better efficiency, we introduce this concept to
SqueezeLight for higher compactness. An M ×N block-
structured matrix W contains P × Q square sub-matrices
{wpq}P,Q

p,q=0, each being a k × k structured matrix. We use
a circulant matrix as an example [22], where each column
is essentially the circular shift of its length-k primary vector
on the first column. Due to row-wise parameter sharing, the
sub-matrix multiplication wpq ·xq can be efficiently squeezed
into one k-operand MORR. Figure 4 visualizes the mapping
from a 4 × 4 structured sub-matrix to an MORR. At time
step t=0, we implement the first row. Then we shift the inputs
around the ring to align with corresponding weights on the
second row and repeat this process. After k time steps with
input rotation, we reuse the same MORR and finish an entire
circulant matrix multiplication. In this way, we successfully

achieve O(k2) times device usage reduction and save k times
wavelength usage.

Area Reduction: Block-Squeezing
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Fig. 4: Squeezing a 4×4 block into one MORR using 4 cycles.
The right part unfolds the input rotation mechanism temporally in 4
cycles on a single MORR.

E. Sparsity Exploration via Fine-Grained Structured Pruning

For an M×N block-structured matrix, the total component
usage adds up to N

2 MRRs and (MN
k2 ) k-operand MORRs.

Given fixed M and N , a larger k means fewer blocks and less
MORR usage. However, implementing MORRs with too many
actuators can be challenging in practice. If one has a tight
device usage budget, it is preferable to use a large sub-matrix
that could exceed the MORR capacity, i.e., k > kmax. To
overcome this, we prune each sub-matrix with a fine-grained
structured sparsity. In Fig. 5, less important entries in the
primary vector are forced to zero, leaving k′ non-zero weights.
The same sparsity pattern will be automatically imposed on
other columns according to the pre-defined matrix structure.
Our block-squeezing technique allows mapping the pruned
sparse block with k′ ≤ kmax into one MORR to maintain the
highest compactness. We adopt a two-stage pruning procedure
with learning rate rewinding to train SqueezeLight with
structured sparsity, described in Alg. 1. We first pre-train and
prune the weights with a target sparsity. Then we re-train the
model from scratch with a rewound learning rate to achieve
better accuracy than traditional post-training fine-tuning.

F. Robustness Boost via Sensitivity-Aware Optimization

For analog computing, noise robustness is considered a
practical concern [1], [12], [17], [23]–[25]. For MORRs, we
consider random phase variations and intra-MORR crosstalk
as the main non-ideal effects. The random variations can be es-
timated as a Gaussian noise on the phase shift ∆ϕ ∈ N (0, σ2).
We formulate the dynamic intra-MORR crosstalk among k
actuators as Φ̂ = Γ ·Φ governed by a coupling matrix Γ,

ϕ̂0

ϕ̂1

· · ·
ϕ̂k−1

 =


γ0,0 γ0,1 · · · γ0,k−1

γ1,0 γ1,1 · · · γ1,k−1

...
...

. . .
...

γk−1,0 γk−1,1 · · · γk−1,k−1


 ϕ0

ϕ1

· · ·
ϕk−1

 , (5)

Note that the crosstalk effect |ϕ̂0 − ϕ0| is dynamically deter-
mined by the weight w and input x, but the coupling matrix
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Fig. 6: Transmission curve f and its gradient ∇ϕf with thermal crosstalk
and sensitivity-aware training.

Γ is constant after manufacturing. The self-coupling factor
γi,i = 1 and all mutual coupling factors γi,j are basically
determined by the spacing among phase shifters [26]. Hence
we assume that they share the same value γ. We found that
intra-MORR crosstalk is equivalent to a constant scaling factor
on ϕ as follows,

ŷm =

Q−1∑
q=0

f
(
(1 + (k′ − 1)γ)ϕmq +∆ϕ

)
d̃q. (6)

This equation implies that pruning can reduce the crosstalk
noise since only the left k′ actuators have crosstalk after prun-
ing. To better understand the sensitivity of MORR neurons to
crosstalk, we show the transmission curve in Figure 6. We ob-
serve that the transmission curve f(·) has different sensitivity
(gradient) at different wavelengths. Crosstalk effects induce
an extra redshift in the spectrum, forcing all ϕ < ϕs to have
higher sensitivity and ϕ ≥ ϕs to have less sensitivity. Based on
this observation, we introduce a sensitivity-aware optimization
method to improve the robustness ofSqueezeLight, shown
in Alg. 1. We adopt the following the objective to train an

Algorithm 1 Training algorithm of SqueezeLight with fine-
grained structured pruning and sensitivity-aware optimization.

Input: Initial weights W 0 ∈ RP×Q×k and D̃0 ∈ RQ/2, pruning
percentage T = 1− k′

k
, pretraining step tpre, initial step size η0,

decay factor β, penalty weight α, variation ∆ϕ, and crosstalk
coupling matrix Γ;

Output: Converged wt, dt, and a pruning mask M∈ ZP×Q×k;
1: for t← 1, · · · , tpre do ▷ Stage 1: Pretraining
2: L ← Lt

0(x;W
t−1, D̃t−1)

3: (W t, D̃t)← (W t−1, D̃t−1)− ηt−1(∇WL,∇D̃L)
4: ηt ← ηt−1β ▷ Learning rate decay
5: ηt ← η0,M← 1 ▷ Learning rate rewinding and initialize

mask
6: for all W t

pqi ∈W t do
7: if W t

pqi < percentile(W t
pq, T ) then

8: Mpqi ← 0 ▷ Compute pruning mask
9: while not converged do ▷ Stage 2: Fine-grained pruning

10: L ← Lt
0(x;M⊙W t−1, D̃t−1,Γ,∆ϕ) + αLS(Γ,∆ϕ) ▷

Sensitivity-aware regularization
11: (W t, D̃t)← (W t−1, D̃t−1)− ηt−1(∇WL,∇D̃L)
12: ηt ← ηt−1β ▷ Learning rate decay

L-layer SqueezeLight,

L=L0(x;W , D̃,Γ,∆ϕ) + α

L−1,M−1,Q−1∑
l,m,q=0

∇ϕf(ϕ̂lmq +∆ϕ), (7)

where L0(x;W , D̃,Γ,∆ϕ) is the task-specific loss with noise
injection, and the second term, denoted as LS(Γ,∆ϕ), is a
sensitivity-aware penalty term weighted by α. This method
jointly considers variations and crosstalk with a gradient-based
sensitivity penalty, enabling close-to-ideal test accuracy.

IV. HARDWARE FEASIBILITY AND EFFICIENCY

We theoretically analyze the hardware feasibility and ef-
ficiency, and qualitatively compare essential features with
previous ONNs.

A. MORR Physical Feasibility

Our MORR leverages the analog property of a successfully
demonstrated digital MOLG [19]. We discuss how to encode
weights and apply inputs to the analog MORR device. We
can use high-speed DACs and high-speed E-O controllers
to switch the input signals. Weight reprogramming is much
less frequent than input signal switching. There are multiple
possible approaches to implementing weights as modulation
coefficients. If the weights are pre-defined and fixed, we
can simply use controller length to encode the weights with
zero energy cost in weight encoding. If the weights need a
dynamic update, we can implement the weights as power
scaling factors on the input signals, e.g., program the electrical
attenuation units to modulate the input signals. Low-speed
electrical attenuators are enough to handle low-frequency
weight reprogramming in most NN workloads.

Note that one may have concerns about the limited finesse
of the low-Q MORR we show. This is a proof-of-concept
example and not necessarily the most suitable ring design for
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SqueezeLight. In later simulation results, we show that
our MORR array works well with high-Q MORRs. Simply
shrinking the range of round-trip phase shift ϕ, either by
scaling down the power of phase tuning signal x or reducing
the tuning coefficient w, can create the same y− ϕ nonlinear
curve as the low-Q MORR. Hence, we do not require a flat
MORR spectrum. Instead, MORRs with high quality values
and finesse are actually preferred to enable a larger WDM
capacity for higher throughput and less spectrum crosstalk.

B. Symbolic Analysis on Area, Latency, and Power
In Table II, our architecture outperforms three coherent

ONNs by a large margin [1], [5], [6]. We focus on the
comparison with the most compact designs MRR-ONN-1 [10]
and MRR-ONN-2 [9] in terms of area cost A, latency τ , and
power P . We assume the current DWDM capacity supports
maximum B different wavelengths [27], [28].

First, the size and power of an MRR and a k-operand
MORR can be assumed the same since they have the same
phase tuning range, i.e., half of the resonance curve. Therefore,
we focus on the number of resonators in the discussion.
We denote the computation efficiency as E = (APτ)−1.
SqueezeLight achieves the following improvement over
two MRR-ONNs when the matrix dimension is smaller than
the DWDM capacity, i.e., N < B,
Aours

Aprev
≈ Pours

Pprev
≈ 1

k2
,
τours
τprev

=
k⌈N/B⌉
⌈N/(2kB)⌉ =k,

Eours
Eprev

≈ k3.

(8)
Once the matrix width is larger than the maximum number of
wavelengths available as N

2k < B < N , we can achieve,

Aours

Aprev
≈ Pours

Pprev
<

2

k
,
τours
τprev

=
k

⌈N
B
⌉
,
Eours
Eprev

≈ Bk3

N
>

k2

2
. (9)

If the weight matrix is even larger, i.e., B < N
2k , we have

Aours

Aprev
≈ Pours

Pprev
≈ 2

k
,
τours
τprev

≈ 1

2
,
Eours
Eprev

≈ k2

2
, if B <

N

2k
.

(10)
It can be observed that our ONN gains more hardware
efficiency advantage as B scales up, thus our scalability grows
together with the development of the DWDM technology.

C. Qualitative Feature Comparison
In Table II we compare several key features of 6 ONN

designs. Previous ONNs mainly focus on general matrix mul-
tiplication and offload the nonlinear activation to the electrical
domain. In contrast, our proposed neuron leverages the built-
in nonlinearity in MORRs to eliminate the overhead from
electrical activation, enabling higher speed and efficiency. In
terms of model expressivity, MRR-ONN-1 [10] has a limited
solution space with only positive weights, while our designs
support full-range weights with augmented representability via
learnable balancing factors. SqueezeLight also benefits
from lower control complexity and higher efficiency due to
direct signal encoding vx = x, while previous MRR-ONNs
require additional nonlinear mapping to encode inputs/weights
into voltage signals vx =

√
ϕ−1(f−1(x)).

D. Quantitative System Performance Evaluation

We give a more rigorous performance analysis on
SqueezeLight and compare it with MRR-ONNs.
Compute Density and Delay. We assume to implement a
256×256 block-structured (k=8) weight matrix. We assume
the ring spacing is 60 µm. The 4-op MORR radius is 20 µm,
and the MRR radius is 5 µm. The WDM capacity is 16. If the
MORR array contains 32×16 4-op MORRs, it takes roughly
32×16×1002µm2. Given the same footprint budget and same
WDM capacity, we can construct a 64×16 MRR weight bank.

Taking into account the delay by modulators (10 ps),
photodetectors (10 ps), ADCs (100 ps), and the optical path
(100µm × 16 × ng/c = 21.3 ps). The total delay of our
MORR array is 141.3 ps, which corresponds to an operating
frequency of 7 GHz. Every cycle, our MORR array can finish
8192 FLOPs. The compute density of SqueezeLight is

16×256×2 OPs
141.3ps×(32×16×100×100µm2) = 11.3 TOPS/mm2. It takes
SqueezeLight 16 cycles (2.26 ns) to implement the
256×256 matrix.

The latency for the 64×16 MRR weight bank is 10+ 10+
100+(70µm×2×16×ng/c) = 179.7 ps, which corresponds
to an operating frequency of 5.6 GHz. Therefore, the com-
pute density for MRR-ONN is 64×16×2 OPs

179.7ps×(64×16×70×70µm2) =

2.3 TOPS/mm2. It takes the MRR-ONN 64 cycles (11.5 ns)
to implement this 256×256 weight matrix.
Power. We consider power consumption including laser, 8-bit
DAC, 8-bit ADC, ring locking, and ring programming. We use
an 8-bit 10 GSPS ADC [32], which consumes 39 mW per
channel. Each high-speed microring modulator approximately
achieves 18 fJ/bit [30], which corresponds to the power Pring

of 0.126 mW under 7 GHz. The static locking power Plock

of each ring is around Plock ≈ 0.5Pπ = 9.75 mW [30],
[33]. For high-speed input x modulation, each DAC power is
PDAC = 3.92 mW [34], [35]. Since weight configuration is
much less frequent than input signals, typically, the weight
DAC dynamic power can be ignored. Based on the detection
sensitivity and circuit insertion loss, the laser power [36] is
Plaser = hν

η×IL2
2Nb+1 × freq. = 131.62 mW , where hν is

the photon energy at 1550 nm, η is the laser efficiency (0.2),
IL is the insertion loss (0.25 dB/ring), and Nb is the resolution
(8-bit). The power consumption for a 32×16 MORR array is

((32× 16 + 16)Plock + (32× 16)Pring) + Plaser

+ 256PDAC + 16PADC

≈ 5212.5 + 131.62 + 1003.52 + 624.00 mW

≈ 6.972 W.

(11)

The energy efficiency of the MORR array is
16×256×2 OPs

141.3 ps×6.972 W = 8.32 TOPS/W .
For the 64×16 MRR weight bank, Pring is 0.101 mW under

5.6 GHz [30]. Each MRR needs extra weight configuration
power [33] Pw = Pπ/(2×finesse) ≈ 0.4875 mW , where
the finesse is around 20 [30]. The total power is

(16Pring + (16× 64)(Plock + Pw)) + Plaser + 16PDAC + 64PADC

≈ 10640.8 + 214.99 + 50.18 + 2496 mW ≈ 13.402 W.
(12)
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TABLE II: Symbolic hardware cost and qualitative feature comparison. The matrix is M × N with size-k blocks. B is the DWDM
capacity. For a fair comparison, the device counts are converted to #MRRs based on real device sizes [1], [6], [29]. The area ratio βa and
power ratio βp between one MZI (240×40 µm2 [1], ∼48mW [29]) and one MRR (20×20 µm2,∼10 mW [30]) are βa=24 and βp=4.8.

MZI-ONN [1] Slim-ONN [5] FFT-ONN [6] MRR-ONN-1 [10] MRR-ONN-2 [9] SqueezeLight
#MRRs βaMN ∼ βa

2
MN ∼ βa

4
MN M min (N,B) M min (N,B) 2M

k
min( N

2k
, B)

#Wavelength 1 1 1 min (N,B) min (N,B) min ( N
2k
, B)

Latency 1 1 1 ⌈N
B
⌉ ⌈N

B
⌉ k⌈ N

2kB
⌉

Power βpMN ∼ βp

2
MN ∼ βpMN M min (N,B) M min (N,B) 2M

k
min( N

2k
, B)

Nonlinearity Electrical Electrical Electrical Electrical Electrical Built-in
Output range Non-negative only Non-negative only Non-negative only Non-negative only Full range Full range
Control complexity High Medium-High High High High Medium

TABLE III: Comprehensive performance comparison between SqueezeLight and MRR-ONN. †To keep the same area cost,
SqueezeLight uses 16 32×16 MORR arrays, and MRR-ONN uses 16 64×16 MRR weight banks in the accelerator. We use DNN-
Chip Predictor [31] to search for optimal hierarchical tiling strategy for SqueezeLight and MRR-ONN, respectively, and use their
optimal tiling strategies for energy simulation.

Design Area ↓ Power ↓ Latency ↓ Operate Freq ↑ Comp. Density ↑ Energy Eff. ↑ † Sys. Energy ↓
(mm2) (W) (ps) (GHz) (TOPS/mm2) (TOPS/W) (µJ)

SqueezeLight 5.12 6.972 (-48%) 141.3 (-21.4%) 7.0 (+25%) 11.3 (4.9×) 8.32 (9.8×) 0.2440 (-63.5%)
MRR-ONN 5.02 13.402 179.7 5.6 2.3 0.85 0.6676

The energy efficiency of the MRR weight bank is
64×16×2 OPs

179.7 ps×13.402 W = 0.850 TOPS/W .
System Energy Cost. We use a DNN-Chip Predictor [31] to
simulate a 256×256 fully connected layer with a four-level
memory hierarchy, including DRAM, SRAM-based global
buffer (GB), network-on-chip (NoC) which describes the
spatial data tiling and the parallelism of the system, and
register files (RF). For SqueezeLight, we use 16 32×16
MORR array in the accelerator. For MRR-ONN, we use 16
64×16 MRR weight banks in the accelerator. We searched
for optimal tiling strategies for them and applied them to
those two accelerators. The basic memory energy model is
based on Eyeriss [37]. MRR-ONN consumes 0.5135 µJ on
data movement. It consumes 0.1541 µJ in computation. The
total energy consumption of MRR-ONN is 0.6676 µJ . In
contrast, our sparse block-squeezing technique helps save 94%
of the weight loading cost, such that SqueezeLight only
consumes 0.2237 µJ on data movement. Plus the 0.0158 µJ in
computation, the total energy consumption SqueezeLight
is 0.2440 µJ , achieving 63.5% overall energy reduction. We
summarize the above analysis in Table III.

V. EXTENSION TO MORR-BASED SEPARABLE CNN WITH
AUGMENTED TRAINABILITY

To enable a real scalable ONN design, the three most
important metrics are representability, hardware efficiency,
and software trainability. Based on the nonlinear MORR
neuron, we have demonstrated an ONN architecture with
high hardware efficiency and representability in Fig. 2. How-
ever, the unsatisfying trainability of the MORR-based ONN
fundamentally restricts the scalability of SqueezeLight.
Specifically, for convolution (CONV) layers, partial convo-
lution results for each MORR need to be stored and activated
by the built-in nonlinearity. Such a mechanism turns out to
consume considerable GPU memory and training time. This

software trainability issue motivates us to design a more
suitable architecture based on MORR arrays that can fully
unleash the scalability advantages of SqueezeLight with
augmented trainability.

A. MORR-based Separable CNN with Layer-Squeezing

An important trade-off in MORR-based ONN design is
between representability and trainability. Hence, we propose
an MORR-based separable CNN architecture that coincides
with an advanced neural network design concept, i.e., depth-
wise separable convolution (DSCONV).
DSConv contains a depth-wise convolution (DWConv) with

per channel convolution and a point-wise convolution with
1×1 kernels (PWConv), which can be taken as a low-rank
decomposition of an original CONV. Such advanced con-
volution is widely used in efficient NN architectures, e.g.,
MobileNet-family, to trim unnecessary computations without
degrading the representability. The most exciting observation
is the perfect match between DSConv and our MORR array,
shown in Fig. 7. In other words, we squeeze DWConv and
PWConv layers into one MORR array. A feature patch with
size of Cin ×K ×K will convolve with the DWConv kernel
WD ∈ RCin×1×K×K , corresponding to Cin length-K2 dot-
products. Hence, we can assign a row of Cin MORRs to
implement it. Note that each k-operand MORR corresponds
to one K × K CONV filter. Then, PWConv will perform
pointwise linear projection on all channels with a kernel
WP ∈ RCout×Cin×1×1 and generate the final feature map.
The pointwise linear projection can be directly mapped to the
MRR-based balancing factors. To achieve balanced output, we
need to split the MORR array into a positive and a negative
array, each implementing half of DSConv. The negative array
equivalently achieves the negative half of WP . The reason
why we do not adopt negative/positive rails on the same array
is that we want to maximize the parameter space of WP

7

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2022.3189567

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at Austin. Downloaded on July 20,2022 at 22:32:35 UTC from IEEE Xplore.  Restrictions apply. 



...

x0 x1

x2xk-1
...

xk xk+1

xk+2
x2k-1 ...

...

...... ...

...

...... ...

...

...... y1

Cin /2 columns

...

y0
...

w0 w1

w2wk-1

wk wk+1

wk+2w2k-1

MORR-based Crossbar Array

𝑑 𝑞  

𝑑 𝑞  

...

x0 x1

x2xk-1
...

xk xk+1

xk+2
x2k-1 ...

...

...... ...

...

...... ...

...

...... y1

Cin /2 columns

...

y0
...

w0 w1

w2wk-1

wk wk+1

wk+2w2k-1

MORR-based Crossbar Array

𝑑 𝑞  

𝑑 𝑞  

Depthwise Conv

* *

Pointwise Conv

×

×

×

...

×
Cin

Cin

......

......

......

......

......
..

.
..

.
...... ..

.
..

.

𝑾𝐷  𝑾𝑃  

...

x0 x1

x2xk-1
...

xk xk+1

xk+2
x2k-1 ...

...

...... ...

...

...... ...

...

......

yH’W’-1

Cin /2 columns

...

...

w0 w1

w2wk-1

wk wk+1

wk+2w2k-1

Pointwise CONV

MORR Array

...

x0 x1

x2xk-1
...

xk xk+1

xk+2
x2k-1 ...

...

...... ...

...

...... ...

...

......

yH’W’-1

Cin /2 columns

...

...

w0 w1

w2wk-1

wk wk+1

wk+2w2k-1

Pointwise CONV

MORR Array

TIA

TIA

TIA

Patch 0

Patch 1

Patch H’W’-1

Patch 0

Depthwise CONV

W’

H’

Cout

Cin

Patch 0

𝑾𝑃(: , :𝑪𝒊𝒏/𝟐 − 𝟏) 

𝑾𝑃(: ,𝑪𝒊𝒏/𝟐: ) 

y0

Positive

Negative

Fig. 7: Architecture of separable SqueezeLight. Squeeze depthwise and
pointwise convolutional layers into one MORR array.

0 200 400 600

Cin(Cout)

102

103

104

P
ea

k
M

em
(M

B
)

Mem (DATE’21)

Mem (TCAD’21)

(a)

0 200 400 600

Cin(Cout)

100

101

102

R
u

n
ti

m
e

(m
s)

Time (DATE’21)

Time (TCAD’21)

(b)

Fig. 8: Peak GPU memory consumption (a) and average GPU runtime
(b) evaluation on an MORR-based CONV3x3 layer (DATE’21) and a
DSConv3x3 layer (TCAD’21) with different input/output channels.

without weight sharing. Theoretically, there will be H ′W ′

rows to map all feature patches. For different output channels,
we can either duplicate the array for Cout times or reuse the
array and sequentially reprogram the MRR-based WP .

Compared with the original MORR CONV engine, this
augmented DSConv engine has the following advantages.
Excellent Trainability. When mapping one CONV layer to
the original MORR array using im2col, the largest interme-
diate partial product feature map contains H ′W ′BPQk ≈
H ′W ′BCoutCin/k elements. In contrast, the largest fea-
ture map in the DSConv module only contains H ′W ′BCin

elements. The training memory footprint is approximately
improved by Cout/k times, which significantly boosts the
software trainability of our SqueezeLight. Figure 8 shows
2-order-of-magnitude higher memory efficiency and runtime
reduction of the augmented SqueezeLight compared with
the original MORR-based CONV engine [13]. Hence, by fill-
ing the trainability gap, all three aforementioned key metrics
for scalable ONNs are met.
Compressed Model Size. This benefit naturally comes from
the low-rank parameter space of DSConv. The weight size
is reduced from CoutCinK

2 to CinK
2 + CoutCin, with a
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∑
i wix
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Fig. 9: Trainable nonlinearity curve of parametric MORR neurons with
different bias b and scale s. Curves highlighted in the shadow region are the
activation functions applied to the dot-product ϕ.

compression ratio of ∼ K2.
Patch-Level Parallelism. The original MORR array essen-
tially performs sequential matrix-vector multiplication, which
processes one feature patch at one time. In contrast, the
augmented MORR array maps multiple image patches to
different rows in parallel, which share the same group of
MRRs. Another advantage of this patch-level parallelism is
the massive reuse of MRRs for WP . With the extensive MRR
reuse, the advantages of ultra-compact MORR neurons will
not be diluted by the usage of MRRs.

B. Parametric MORR Neuron via Trainable Nonlinearity

Thanks to the augmented software trainability of the
MORR-based separable CONV engine, we are able to ef-
ficiently explore the representability of SqueezeLight
deeper. Moving beyond the fixed nonlinear transmission curve
of an MORR, we further explore more expressivity in our
MORR-based neuron via trainable nonlinearity. Inspired by
previous work on learning activations for NNs, we try to adapt
the shape and the sharpness of the nonlinear curve by tuning
the phase bias b and the input scaling factor s,

fb,s(ϕ) = f(sϕ+ b) = f(s

k−1∑
i=0

wix
2
i + b). (13)

Figure 9 shows how b and s change the nonlinearity applied
to the dot-product results. A dedicated biasing current can
be applied to the actuators on MORRs to tune the curve’s
center wavelength. By scaling the heating power range of
x with the factor s, the sharpness of the nonlinearity can
also be efficiently tuned. Such tunable nonlinearity introduces
extra non-convexity, leading to stronger representability than
conventional activation functions, e.g., ReLU. In later section,
we will show the performance benefits from our trainable
MORR neuron.

C. Nonlinearity-aware Initialization

A proper initialization is critical to the convergence of
nonlinear nonconvex optimization problems, especially for
DNN training. Though various normalization methods, e.g.,
BatchNorm, can relax the sensitivity of DNN learning to
parameter initialization, the built-in nonlinearity of MORRs
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still requires appropriate weight distribution to avoid dot-
product values falling into saturation ranges. The second
reason for a specialized initialization method is the potential
activation explosion due to normalized MORR output. Each
MORR has a normalized output range of [0, 1], such that the
final activation magnitude is nearly proportional to the number
of MORRs cascaded on one row.

Therefore, we show a nonlinearity-aware initialization al-
gorithm to maintain nearly constant variance after layer cas-
cading. We first assume the input x is normalized with zero
center, i.e., E[x] = 0,D[x] = σ2

x, and the statistics of non-
negative weights are denoted as E[w] and D[w]. Based on
ϕ =

∑k−1
i=0 wix

2
i , thus we can derive the variance of the

accumulated round-trip phase shift of a k-segment MORR
since x and w are independent random variables,

D[ϕ] =k(E2[w]D[x2] + E2[x2]D[w] + D[w]D[x2])

=kσ4
x(2E2[w] + 3D[w]).

(14)

In our algorithm, the weights will be sampled from a non-
negative uniform distribution, i.e., w ∼ U(0, L). Thus Eq. (14)
can be rewritten as,

D[ϕ] = kσ4
x

(
2
(L
2

)2

+
3L2

12

)
=

3kσ4
xL

2

4
. (15)

To solve L analytically, we need to know D[ϕ]. Considering
the inter-MORR crosstalk due to spectrum leakage, a typical
spectral distance between two adjacent wavelengths are at
least 4 FWHM, where the full width half maximum (FWHM)
represents the peak width when the energy is reduced to
50%. We heuristically and conservatively set a constraint to
the maximum tuning range (±2σϕ) of the round-trip phase
shift, i.e., 4

√
D[ϕ] ≈ 3 FWHM. Now we given the uniform

distribution for the weights w,

morr_uniform(w) ∼ U
(
0, σ2

x FWHM

√
3

4k

)
. (16)

So far, we properly initialize weights w considering the
MORR transmission curve f(·). The next step is to initialize
the learnable balancing factors D̃ to keep the variance of the
final activation the same as that of inputs x, i.e., D[y] = D[x].
The target distribution of balancing factors is zero-centered
normal distribution, i.e., d̃ ∼ N (0, σ2

d̃
). Given the differential

detection result y =
∑Q−1

q=0 f(ϕ)d̃q , we can rewrite it as y =∑Q/2
q=0 ∆f(ϕ)d̃q , where ∆f(ϕ) is the equivalent differential

MORR transmission between positive and negative rails. We
have E[∆f(ϕ)] = 0. Then we can derive the variance of the
final activation,

D[y] =Q

2
(E2[∆f(ϕ)]D[d̃] + E2[d̃]D[∆f(ϕ)] + D[∆f(ϕ)]D[d̃])

=
Q

2
D[∆f(ϕ)]σ2

d̃ = QD[f(ϕ)]σ2
d̃ = σ2

x.

(17)
The variance of the balancing factor is given by

D[d̃] = σ2
x

Q D[f(ϕ)]
≈ σ2

x

Q · g2fD[ϕ]
=

16σ2
x

9Q · g2f · FWHM2 , (18)

0 20 40 60 80 100

Epoch

75

85

95

A
cc

u
ra

cy
(%

)

train/kaiming

test/kaiming

train/morr

test/morr

(a)

0 20 40 60 80 100

Epoch

65

75

85

A
cc

u
ra

cy
(%

)

train/kaiming

test/kaiming

train/morr

test/morr

(b)

Fig. 10: Compare the training and test accuracy curves on MNIST (a)
and FashionMNIST (b). We compare our proposed morr_uniform with
the kaiming initializer.

where gf is a linear approximation to the gradient of the
nonlinear transmission, i.e, gf = f(ϕc+2FWHM)−f(ϕc)

2FWHM , where
ϕc is the on-resonance phase shift.

Now, we show an ablation study to validate the effectiveness
of the proposed nonlinearity-aware initialization method. From
the training curves shown in Figure 10, we observe consider-
ably faster convergence and higher test accuracy by using our
proposed MORR-aware initialization method. In the following
experiments, we will use the proposed initialization by default.

VI. EXPERIMENTAL RESULTS

We conduct optical simulation to validate the functional-
ity and evaluate SqueezeLight on MNIST [38], Fash-
ionMNIST (FMNIST) [39], SVHN [40], CIFAR-10 [41],
and CIFAR-100 dataset. All models are implemented with
a PyTorch-centric ONN library TorchONN [42]. All ONNs
are trained for 100 epochs using the Adam optimizer.
Quantization-aware training [43] is applied to perform 8-bit
weight/input/activation quantization.

A. Functionality Validation via Optical Simulation

One MORR Neuron. The MORR-based neuron is simulated
using the commercial Lumerical INTERCONNECT tool for
functional validation. Figure 11 plots the theoretical and
simulated outputs of a 4-operand MORR under 1- to 4-bit
precision. The design specification of the MORR is as follows.
Radius R = 20µm, transmission coefficient r = 0.8985,
attenuation factor a = 0.8578, effective index neff = 2.35.
The central resonance wavelength is 1554.252 nm. We assume
the 4-op MORR is programmed with 1- to 4-bit weights w,
and we apply 1- to 4-bit voltage signals x to its controllers.
We use Lumerical INTERCONNECT to simulate the intensity
transmission of this MORR under given input/weights. The
detector sensitivity is set to 1 A/W. Only the insertion loss
of MORR is considered, while the loss in the waveguide is
ignored. The derived neuron model has a high fidelity with
<1% relative error compared with simulation results.
MORR Array. We further simulate a 2×4 MORR array with
4 MRRs to implement balancing factors, together with 4 4-op
MORRs on the positive rail and another 4 MORRs on the
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Fig. 12: 2×4 MORR array used in simulation.

negative rail, as shown in Fig. 12. In the end, we add the
differential photo-detection. All electrical voltage controls are
of 4-bit precision. We use 1550, 1554, 1558, and 1562 nm
as WDM sources. For the above 4 resonance wavelengths,
we design the rings with a radius of 10.08 µm, 10.10 µm,
10.13 µm, and 10.16 µm, respectively. The transmission
coefficient is r = 0.98, and the attenuation coefficient is
a = 0.97. This MORR has much higher Q values and larger
FSR than the 20 µm MORR used in the single MORR neuron
simulation, which can enable higher WDM capacity with less
spectrum crosstalk issue. In 4 test cases, the simulation results
slightly deviate from the theoretical values due to wavelength
misalignment, spectrum crosstalk, MORR insertion loss, etc.,
which validate the functionality of SqueezeLight.

B. Compare SqueezeLight with Prior MRR-ONNs

In Table V, we compare the test accuracy among three
ONNs: 1) MRR-ONN-1 with all-pass MRRs [10], 2) MRR-
ONN-2 with add-drop MRRs [9], and 3) our proposed
SqueezeLight without pruning (Ours). In all dataset and
ONN settings, SqueezeLight achieves comparable test
accuracy with 20-30× fewer ring resonators, 8× lower wave-
length usage, and ∼80% fewer parameters.

C. Quantization

We also evaluate our architecture with low-bit quantization.
Even binarized SqueezeLight can achieve >95% accuracy
on MNIST with the large model, and >98% accuracy can

TABLE IV: Length-16 4-bit nonlinear vector-product simulated on
a 2×4 4-op MORR array with 4 MRRs.

Test case Simulated ŷ Theoretical y Error |ŷ − y|

1 0.3709 0.3708 0.0001
2 -0.1070 -0.0811 0.0259
3 -0.5916 -0.6170 0.0254
4 0.8505 0.8717 0.0212

be maintained with 2∼8 bit precision. Note that prior work
has demonstrated MRR weight banks with higher than 7-
bit weight precision [35]. Our SqueezeLight can work
will with low-bit weight precision, which further justifies the
practicality of our design.
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Fig. 13: 1- to 8-bit quantization of SqueezeLight on MNIST.

D. Fine-Grained Structured Pruning
In Table VI, the pruned SqueezeLight only requires 4-

operand MORRs to implement sparse sub-matrices with k′=4,
which reduces the manufacturing and control complexity with
no accuracy loss. Moreover, the saved 30% parameters lead
to less weight storage cost. This enables us to achieve better
scalability by squeezing larger blocks into one MORR with
negligible accuracy loss.

E. Variation Robustness Evaluation
In Fig. 14, we evaluate the variation robustness on 1) MRR-

ONN-1, 2) MRR-ONN-2, 3) unpruned SqueezeLight
(Ours), 4) pruned SqueezeLight (Ours-P), and 5) ours with
pruning and robustness-aware training (Ours-PR). In the pres-
ence of the additional intra-MORR crosstalk, our ONN shows
lower accuracy than other MRR-ONNs if no pruning or noise-
aware training is performed. When we apply fine-grained
structured pruning, the crosstalk sources are cut down from
k = 8 to k′ = 4, achieving improved noise tolerance. With
sensitivity-aware training based on Eq. (7), SqueezeLight
can stably maintain above 97% accuracy, which is reasonably
close to the ideal accuracy, while other ONNs suffer from
a sharply-degrading trend as the noise intensity increases.
Therefore, our proposed lightweight robustness-aware training
guarantees SqueezeLight to have reliable inference perfor-
mance even under practical non-ideal variations.

F. Extended MORR-based Separable CNN
In Table VII, we thoroughly evaluate the scalability and ef-

fectiveness of the extended separable CNN architecture on var-
ious learning tasks and models. On large models, the training

Fig. 14: Robustness evaluation of the large model on MNIST. The error
bar shows ±1σ over 20 runs, e.g., 0.04 means γ=0.04 and std. ∆ϕ=0.04.
Ours-PR means our pruned model with sensitivity-aware training (α=0.02).
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TABLE V: Accuracy and hardware cost comparison. small model is C32K5S2-BN-C32K5S2-BN-F10, where C32K5S2 is 5×5 convolution
with 32 kernels and stride 2, BN is BatchNorm, and F10 is a linear layer. large model is C64K5S2-BN-C64K5S2-BN-F10. We use k = 8
in convolutional layers and k = 4 in the final classifier. #Device, #λ, and #Param are the number of used resonators, wavelengths, and
parameters, respectively. Normalized ratios are shown in the parenthesis. All models are trained with 8-bit weight/input/activation quantization.

Dataset Model MRR-ONN-1 [10] MRR-ONN-2 [9] Ours
Test Acc. #Device #λ #Param Test Acc. #Device #λ #Param Test Acc. #Device #λ #Param

MNIST small 97.81 39.90 K (23.86) 1152(8) 38 K 98.55 39.90 K (23.86) 1152(8) 38 K 98.01 1.67 K (1.00) 144(1) 8 K
MNIST large 97.89 130.97 K (31.64) 2304(8) 127 K 98.84 130.97 K (31.64) 2304(8) 127 K 98.36 4.14 K (1.00) 288(1) 22 K

FMNIST small 86.97 39.90 K (23.86) 1152(8) 38 K 89.52 39.90 K (23.86) 1152(8) 38 K 86.65 1.67 K (1.00) 144(1) 8 K
FMNIST large 87.75 130.97 K (31.64) 2304(8) 127 K 90.30 130.97 K (31.64) 2304(8) 127 K 87.21 4.14 K (1.00) 288(1) 22 K

CIFAR-10 large 48.79 143.37 K (28.50) 3136(8) 139 K 61.69 143.37 K (28.50) 3136(8) 139 K 58.29 5.03 K (1.00) 392(1) 26 K

TABLE VI: Fine-grained structured pruning evaluation. #8op
represents the number of 8-operand MORRs. Ours-P represents all
convolutional layers are pruned from k=8 to k′=4.

Dataset Model Ours Ours-P
Acc. #8op #4op #Param Acc. #8op #4op #Param

MNIST small 98.01 416 864 8 K 98.02 0 1280 6 K
MNIST large 98.36 1632 1728 22 K 98.58 0 3360 16 K

FMNIST small 86.65 416 864 8 K 86.50 0 1280 6 K
FMNIST large 87.21 1632 1728 22 K 87.36 0 3360 16 K

CIFAR-10 large 58.29 1680 2352 26 K 60.52 0 4032 19 K

TABLE VII: Compare accuracy of separable SqueezeLight
with fixed and learnable MORR nonlinearity on various tasks and
models. We further prune convolutional kernels from k=9 to k′=4 to
make it implementable with 4-operand MORRs. The suffix -L and -P
represent using trainable MORR nonlinearity and structured pruning,
respectively. The settings for CNN-2 are C64-C64-Pool5-F10. The
settings for CNN-3 are C64-C64-C64-Pool5-F10. All convolutional
layers (except for the first layer) in the model are implemented by
the proposed MORR-based separable convolution.

Model CNN-2 CNN-3 VGG-8
Dataset MNIST FMNIST SVHN CIFAR-10 CIFAR-100
Ours 98.07 87.66 93.09 83.61 56.92
Ours-L 98.67 89.07 93.75 84.78 58.61
Ours-LP 98.37 90.65 93.82 86.31 60.83

of the original MORR CNN [13] fails due to prohibitive GPU
memory and runtime cost. Thanks to the superior software
trainability of our MORR-based separable convolution, we
can scale the extended SqueezeLight to million-parameter
ONN models, e.g., VGG-8, on various vision recognition
datasets. Meanwhile, our separable MORR-based architecture
saves ∼9× parameters compared with the original Conv-based
ONN model, leading to significant storage cost reduction.

We further compare SuqeezeLight with and without
trainable MORR nonlinearity. Figure. 15 visualizes the learned
channel-wise MORR nonlinearity curves in two DSConv lay-
ers of VGG-8. We observe that the SqueezeLight explores
various monotonic or non-monotonic activation functions with
augmented representability than a fixed zero-bias MORR
nonlinearity curve. Our trainable MORR neurons boost the
representability to effectively compensate for the performance
loss from parameter compression, leading to an average of
∼1.1% test accuracy improvement on 5 learning tasks.

Note that the 3×3 depthwise convolution maps 9 weights
to 1 MORR, which exceeds the typical capacity of 4 operands
per MORR. We apply structured pruning to leave 4 non-zero
weights in each depthwise convolutional kernel and demon-
strate an average 2.13% accuracy improvement in Table VII.
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Fig. 15: Learned MORR nonlinearity for the 1st (a) and 3rd (b)
DSConv layers in VGG-8 on CIFAR-10. Each curve represents the
nonlinearity curve of one input channel.

VII. CONCLUSION

In this work, we propose a novel ONN architecture
SqueezeLight to break the compactness record of previous
designs with higher scalability and efficiency. An MORR-
based optical neuron with built-in nonlinearity is proposed
to squeeze vector dot-product into a single device. A block-
squeezing technique with fine-grained structured pruning is
proposed to further squeeze a matrix into an MORR to enable
a quadratically more compact ONN design. We introduce
sensitivity-aware training to enable close-to-ideal neurocom-
puting with high noise robustness. We give a theoretical
analysis and thorough comparison to show the scalability
and efficiency advantage of SqueezeLight. We extend
SqueezeLight to an MORR-based separable CNN archi-
tecture with layer-wise squeezing and learnable nonlinearity,
showing order-of-magnitude higher software training scalabil-
ity and expressiveness improvement. Experiments show that
SqueezeLight breaks the area lower bound of previous
MRR-based ONNs with 20-30× better scalability and com-
petitive expressiveness.
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