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Abstract— As a promising neuromorphic framework, the optical neural
network (ONN) demonstrates ultra-high inference speed with low energy
consumption. However, the previous ONN architectures have high area
overhead which limits their practicality. In this paper, we propose an area-
efficient ONN architecture based on structured neural networks, leverag-
ing optical fast Fourier transform for efficient computation. A two-phase
software training flow with structured pruning is proposed to further
reduce the optical component utilization. Experimental results demon-
strate that the proposed architecture can achieve 2.2∼3.7× area cost
improvement compared with the previous singular value decomposition-
based architecture with comparable inference accuracy. A novel optical
microdisk-based convolutional neural network architecture with joint
learnability is proposed as an extension to move beyond Fourier transform
and multi-layer perception, enabling hardware-aware ONN design space
exploration with lower area cost, higher power efficiency, and better noise-
robustness.

I. INTRODUCTION

Deep neural networks (DNNs) have demonstrated superior perfor-
mance in a variety of intelligent tasks, for example convolutional
neural networks on image classification [1] and recurrent neural
networks on language translation [2]. Multi-layer perceptrons (MLPs)
are among the most fundamental components in modern DNNs, which
are typically used as regression layers, classifiers, embedding layers,
and attention layers, etc. However, it becomes challenging for tradi-
tional electrical digital von Neumann schemes to support escalating
computation demands owing to speed and energy inefficiency [3]–
[7]. To resolve this issue, significant efforts have been made on
hardware design of neuromorphic computing frameworks to improve
the computational speed of neural networks, such as electronic ar-
chitectures [8]–[10] and photonic architectures [11]–[15]. Among
extensive neuromorphic computing systems, optical neural networks
(ONNs) distinguish themselves by ultra-high bandwidth, ultra-low
latency, and near-zero energy consumption. Even though ONNs are
currently not competitive in terms of area cost, they still offer a
promising alternative approach to microelectronic implementations
given the above advantages.

Recently, several works demonstrated that MLP inference can be
efficiently performed at the speed of light with optical components,
e.g., spike processing [11] and reservoir computing [16]. They claimed
a photodetection rate over 100 GHz in photonic networks, with
near-zero energy consumption if passive photonic components are
used [17]. Based on matrix singular value decomposition (SVD) and
unitary matrix parametrization [18], [19], Shen et al. [3] designed
and fabricated a fully optical neural network that achieves an MLP
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with Mach-zehnder interferometer (MZI) arrays. Once the weight
matrices in the MLP are trained and decomposed, thermo-optic phase
shifters on the arms of MZIs can be set up accordingly. Since the
weight matrices are fixed after training, this fully optical neural
network can be completely passive, thus minimizes the total energy
consumption. However, this SVD-based architecture is limited by high
photonic component utilization and area cost. Considering a single
fully-connected layer with an m × n weight matrix, the SVD-based
ONN architecture requires O(m2 + n2) MZIs for implementation.
Another work [20] proposed a slimmed ONN architecture (TΣU)
based on the previous one [3], which substitutes one of the unitary
blocks with a sparse tree network. However, its area cost improvement
is limited. Therefore, this high hardware complexity of the SVD-
based ONN architecture has become the bottleneck of its hardware
implementation.

In addition to hardware implementation, recent advances in neural
architecture design and network compression techniques have shown
significant reduction in computational cost. For example, structured
neural networks (SNNs) [21] were proposed to significantly reduce
computational complexity and thus, become amenable to hardware.
Besides, network pruning offers another powerful approach to slim-
ming down neural networks by cutting off insignificant neuron con-
nections. While non-structured pruning [22] produces random neuron
sparsity, group sparsity regularization [23] and structured pruning
[9] can lead to better network regularity and hardware efficiency.
However, readily-available pruning techniques are rather challenging
to be applied to the SVD-based architecture due to some issues, such
as accuracy degradation and hardware irregularity. The gap between
hardware-aware pruning and the SVD-based architecture gives another
motivation for a pruning-friendly ONN architecture.

In this paper, we propose a new ONN architecture that improves
area efficiency over previous ONN architectures. It leverages optical
fast Fourier transform (OFFT) and its inverse (OIFFT) to implement
structured neural networks, achieving lower optical component uti-
lization. It also enables the application of structured pruning given
its architectural regularity. The proposed architecture partitions the
weight matrices into block-circulant matrices [24] and efficiently
performs circulant matrix multiplication through OFFT/OIFFT. We
also adopt a two-phase software training flow with structured pruning
to further reduce photonic component utilization while maintaining
comparable inference accuracy to previous ONN architectures. We
extend this architecture to a hardware-efficient optical convolutional
neural network design with joint learnability, and demonstrate its
superior power efficiency and noise-robustness compared with Fourier
transform based design. The main contributions of this work are as
follows:

• We propose a novel, area-efficient optical neural network ar-
chitecture with OFFT/OIFFT, and exploit a two-phase soft-
ware training flow with structured pruning to learn hardware-
friendly sparse neural networks that directly eliminate part of
OFFT/OIFFT modules for further area efficiency improvement.

• We experimentally show that pruning is challenging to be ap-
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plied to previous ONN architectures due to accuracy loss and
retrainability issues.

• We experimentally demonstrate that our proposed architecture
can lead to an area saving of 2.2∼3.7× compared with the
previous SVD-based ONN architecture, with negligible inference
accuracy loss.

• We extend our ASP-DAC version of ONN architecture [25] to
a novel design for microdisk-based frequency-domain optical
convolutional neural networks with high parallelism.

• We propose a trainable frequency-domain transform structure and
demonstrate it can be pruned with high sparsity and outperforms
traditional Fourier transform with less component count, higher
power efficiency, and better noise-robustness.

The remainder of this paper is organized as follows. Section II
introduces the background knowledge for our proposed architecture.
Section III demonstrates the challenges to apply pruning to SVD-
based architectures. Section IV presents details about the proposed
ONN architecture and software pruning flow. Section V analytically
compares our hardware utilization with the SVD-based architecture.
Section VI demonstrates an extension to optical convolutional neural
network with trainable transform structures. Section VII reports the
experimental results for our proposed ONN architecture and its CNN
extension, followed by the conclusion in Section VIII.

II. PRELIMINARIES

In this section, we introduce the background knowledge for our
proposed architecture. We discuss principles of cirulant matrix rep-
resentation and its fast computation algorithms in Section II-A and
illustrate structured pruning techniques with Group Lasso regulariza-
tion in Section II-B.

A. FFT-based Circulant Matrix Computation

Unlike the SVD-based ONNs which focus on classical MLPs, our
proposed architecture is based on structured neural networks (SNNs)
with circulant matrix representation. SNNs are a class of neural
networks that are specially designed for computational complexity
reduction, whose weight matrices are regularized using the composi-
tion of structured sub-matrices [21]. Among all structured matrices,
circulant matrices are often preferred in recent SNN designs.

As an example, we show an n× n circulant matrix W as follows,
w0 wn−1 · · · w1

w1 w0 · · · w2

...
...

. . .
...

wn−1 wn−2 · · · w0

 .
The first column vector w = [w0, w1, . . . , wn−1]T represents all in-
dependent parameters inW , and other columns are just its circulation.

According to [24], circulant matrix-vector multiplication can be
efficiently calculated through fast Fourier transform. Specifically,
given an n×n circulant matrix W and a length-n vector x, y = Wx
can be efficiently performed with O(n logn) complexity as,

y = F−1(F(w)�F(x)
)
, (1)

where F(·) represents n-point real-to-complex fast Fourier transform
(FFT), F−1(·) represents its inverse (IFFT), and� represents complex
vector element-wise multiplication.

SNNs benefit from high computational efficiency while maintaining
comparable model expressivity to classical NNs. Theoretical analysis
[26] shows that SNNs can approximate arbitrary continuous functions
with arbitrary accuracy given enough parameters, and are also capable
of achieving the identical error bound to that of classical NNs.

Therefore, based on SNNs with circulant matrix representation, the
proposed architecture features low computational complexity and
comparable model expressivity.

B. Structured Pruning with Group Lasso Penalty

The proposed ONN architecture enables the application of struc-
tured pruning to further save optical components while maintaining
accuracy and structural regularity. Structured pruning trims the neuron
connections in NNs to mitigate computational complexity. Unlike `1
or `2 norm regularization, which produces arbitrarily-appearing zero
elements, structured pruning with Group Lasso regularization [9], [27]
leads to zero entries in groups. This coarse-grained sparsity is more
friendly to hardware implementation than non-structured sparsity. The
formulation of Group Lasso regularization term is given as follows,

LGL =

G∑
g=0

√
1/pg‖βg‖2, (2)

where G is the total number of parameter groups, βg is the parameter
vector in the g-th group, ‖ · ‖2 represents `2 norm, pg represents
the vector length of βg , which accounts for the varying group sizes.
Intuitively, the `2 norm penalty ‖βg‖2 encourages all elements in the
g-th group to converge to 0, and the group-wise summation operation
is equivalent to group-level `1 norm regularization, which contributes
to the coarse-grained sparsity. Leveraging the structured pruning
together with Group Lasso regularization, our proposed architecture
can save even more photonic components.

III. CHALLENGES IN PRUNING SVD-BASED ARCHITECTURE

In this section, we demonstrate that the network pruning is ex-
perimentally challenging in the SVD-based architecture. As far as we
know, it is hard to find any pruning method that can be directly applied
to sparsifying MZI arrays.

In the SVD-based architecture, an m×n weight matrix W can be
decomposed into W = UΣV using singular value decomposition.
Unitary matrices U and V can be further parametrized [18] into
the product of planar rotation matrices U = D · Π2

i=mΠi−1
j=1Rij ,

where D is a diagonal matrix and each unitary rotation Rij can be
represented by an angle or phase φ. Each unitary rotation matrix with
phase φ can be implemented with an MZI. We denote all phases
after parametrization as Φ. Phases with particular values, i.e., 0, π/2,
π, and −π/2, can physically eliminate the use of the corresponding
MZIs. We refer to these particular phases as sparse phases. One of the
methods to perform pruning is to train a sparse weight matrix, but the
sparsity can barely maintain after decomposition and parametrization.
Another straight-forward method is post-training phase pruning. It
directly clamps sparse phases but could cause significant accuracy
degradation due to its unretrainability.

We experimentally illustrate the correlation between inference ac-
curacy and phase sparsity. Phase sparsity for MZI-based ONN is
defined as the percentage of prunable phases in all phases, i.e.,
|{φ|φ = 0, π/2, π,−π/2}|/|Φ|. Concretely, we clamp Φ with a
threshold ε to get Φ̂. Then we evaluate the inference accuracy with
reconstructed weight matrix Ŵ . Figure 1 shows that, in different
network configurations, on average no more than 15% phases can be
pruned to achieve negligible (∼ 0.5%) absolute accuracy degradation.
With over 20% phases being pruned, its model expressivity will
be severely harmed with significant accuracy loss (> 1%). This
accuracy loss partially attributes to the difficulty of retraining the
weight matrices while maintaining phase sparsity. Another challenge
derives from the hardware irregularity caused by non-structured phase
pruning, which further limits the area improvement it can achieve.
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Fig. 1: Correlation between phase sparsity and inference accuracy with
different network configurations based on MNIST [28] dataset. Phase
sparsity indicates the proportion of prunable phases in the MZI-based
ONN. 196-128-128-10 represents an MLP configuration with 196 inputs
(16×16), two hidden layers with 128 neurons in each layer, and 10 output
logits for the last layer.

The above limitations also apply to the TΣU-based architecture [20]
as it has a similar architectural design to the SVD-based one. This
unsatisfying incompatibility between previous ONN architectures and
pruning techniques offers a strong motivation for us to propose a new
architecture to better leverage pruning techniques.

IV. PROPOSED ARCHITECTURE

In this section, we will discuss details about the proposed architec-
ture and pruning method. In the first part, we illustrate five stages of
our proposed architecture. In the second part, we focus on the two-
phase software training flow with structured pruning.

A. Proposed Architecture

Based on structured neural networks, our proposed architecture
implements a structured version of MLPs with circulant matrix repre-
sentation. A single layer in the proposed architecture performs linear
transformation via block-circulant matrix multiplication y = Wx.
Consider an n-input, m-output layer, the weight matrix W ∈ Rm×n
is partitioned into p × q sub-matrices, each being a k × k circulant
matrix. To perform tiled matrix multiplication, the input x is also
partitioned into q segments x = (x0,x1, · · · ,xq−1). Thus y = Wx
can be performed in a tiled way,

y =


y0

y1

...
yp−1

 =


∑q−1
j=0 W0jxj∑q−1
j=0 W1jxj

...∑q−1
j=0 Wp−1jxj

 . (3)

The ith segment yi =
∑q−1
j=0 Wijxj is the accumulation of q

independent circulant matrix multiplications. Each Wijxj can be
efficiently calculated using the fast computation algorithm mentioned
in Eq. (1). Based on the aforementioned equations, we realize block-
circulant matrix multiplication y = Wx in five stages: 1) Splitter
tree (ST) stage to split input optical signals for reuse; 2) OFFT
stage to calculate F(x); 3) element-wise multiplication (EM) stage to
calculate F(wij)�F(xj) as described in Eq. (1); 4) OIFFT stage to
calculate F−1(·); 5) combiner tree (CT) stage to accumulate partial
multiplications to form the final results. F(wij) can be precomputed
and encoded into optical components, thus there is no extra stage
to physically perform it. The schematic diagram of our proposed
architecture is shown in Fig. 2. Details of the above five stages will
be discussed in the rest of this section.

Fig. 2: Schematic diagram of a single layer of the proposed architec-
ture. All adjacent phase shifters on the same waveguide are already
merged into one phase shifter.

Fig. 3: Schematics of (a) 4-point OFFT, (b) 4-point OIFFT, and (c) 2×2

coupler. Note that phase shifters shown above are not merged for structural
completeness consideration.

1) OFFT/OIFFT Stages: To better model the optical components
used to implement the OFFT/OIFFT stages, we introduce a unitary
FFT as,

Xk =
1
√
N

N−1∑
n=0

xne
−i 2πkn

N k = 0, 1, · · · , N − 1. (4)

We denote this special operation as F̂(·) and its inverse as F̂−1(·),
to distinguish from the original FFT/IFFT operations. Equivalently,
we re-write the circulant matrix multiplication with the above new
operations,

y = F̂−1(F(w)� F̂(x)
)
. (5)

This unitary FFT operation can be realized with optical components.
We first give a simple example for the optical implementation of a
2-point unitary FFT. As shown in Eq. (7), the transformation matrix
of a 2-point unitary FFT can be decomposed into three transform
matrices. They can be directly mapped to a 3-dB directional coupler
with two −π/2 phase shifters on its lower input/output ports. The
transfer matrix of a 50/50 optical directional coupler is given by,

1
√

2

(
1 j

j 1

)
. (6)

The transfer function of a phase shifter is out = in · ejφ. For brevity,
we refer to this cascaded structure as a 2×2 coupler, which is shown
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Fig. 4: Complex number multiplication realized by cascaded attenua-
tor/amplifier and phase shifter.

in Fig. 3(c).(
out1
out2

)
=

1
√

2

(
in1 + in2

in1 − in2

)
=

(
1 0

0 −j

)
︸ ︷︷ ︸

output phase shifter

1
√

2

(
1 j

j 1

)
︸ ︷︷ ︸
directional coupler

(
1 0

0 −j

)
︸ ︷︷ ︸

input phase shifter

(
in1

in2

)
(7)

Based on 2 × 2 couplers and phase shifters, larger-sized
OFFT/OIFFT can be constructed with a butterfly structure. The
schematics of a simple 4-point OFFT and OIFFT are shown in
Fig. 3(a) and Fig. 3(b). Extra 0-degree phase shifters are inserted for
phase tuning purpose.

This butterfly-structured OFFT may have scalability issues because
the number of waveguide crossings (CR) will increase rapidly when
the number of point gets larger. However, this unsatisfying scalability
will not limit our proposed architecture for two reasons. First, only
small values of k, e.g., 2, 4, 8, will be adopted to balance hardware
efficiency and model expressivity. Second, input and output sequences
can be reordered to avoid unnecessary waveguide crossings, as shown
in Fig. 3.

2) EM Stage: In the EM stage, complex vector element-wise
multiplications will be performed in the Fourier domain as αeφ ·
Iine

φin = α Iine
φin+φ, where Iin and φin are magnitude and

phase of input Fourier light signals respectively. Leveraging the
polarization of light, we use optical attenuators (AT) or amplification
materials/optical on-chip amplifiers with a scaling factor α to realize
modulus multiplication α · Iin and phase shifters with φ phase shift
for argument addition ej(φ+φin), which is shown in Fig. 4.

3) ST/CT Stage: We introduce tree-structured splitter/combiner net-
works to realize input signal splitting and output signal accumulation,
respectively. To reuse input segments xj in multiple blocks, optical
splitters (SP) are used to split optical signals. Similarly, to accumulate
partial multiplication results, i.e., yi =

∑q−1
j=0 Wijxj , we adopt

optical combiners (CB) for signal addition. Given that optical splitters
can be realized by using combiners in an inversed direction, we will
focus on the combiner tree structure for brevity.

The transfer function of an N -to-1 optical combiner is,

out =
1
√
N

N−1∑
l=0

inl. (8)

Accumulating q length-k vectors by simply using k q-to-1 combiners
introduces a huge number of waveguide crossings which may cause
intractable implementation difficulty. Also, combiners with more than
two ports are still challenging for manufacturing. In order to alleviate
this problem, we adopt a tree-structured combiner network, shown in
Fig. 5. This combiner tree consists of k(q−1) combiners and reduces
the number of waveguide crossings to k(k− 1)(q− 1)/2. Given that
combiners will cause optical intensity loss by a factor of 1/

√
N as

shown in Eq. (8), we assume there will be optical amplifiers added to
the end to compensate this loss.

In terms of cascading multiple layers, our proposed FFT-based
MLP is fully optical, such that the output optical signals can be

Fig. 5: Comparison between direct combining (left) and combiner tree
(right) with 4 length-2 vectors accumulated.

directly fed into the next layer without optical-electrical-optical (O-
E-O) conversion. At the end of the last layer, photo-detection is
used for signal readout, and the phase information of the outputs are
removed, which can be fully modeled during our training process
without causing any accuracy loss.

B. Two-phase Training Flow with Structured Pruning

Structured pruning can be applied to our proposed architecture
during training given its architectural regularity. As described in Alg.
1, we exploit a two-phase software training flow with structured
pruning to train a more compact NN model with fewer redundancies
and negligible accuracy loss. Lines 2-4 perform the first initial training
phase with Group Lasso regularization term added to our loss function.

L = Lbase + λ LGL, (9)

where Lbase is the basic loss function, e.g., cross-entropy loss if
targeted at classification tasks, and λ is a hyper-parameter used to
weigh the regularization term LGL given in Eq. 2. The initial training
phase explores a good local minimum in the full parameter space
to get rough convergence. This is designed to provide a good initial
model for the subsequent pruning. Line 5 enters the structured pruning
phase. The pruning mask M is generated to mark wij whose `2
norm falls below a threshold T . Those marked weight groups will
be forced to zero. Hence, the corresponding hardware modules can
be completely eliminated. As training and pruning are alternately
performed, the network sparsity will incrementally improve. Line 12
applies a smooth function, e.g., polynomial or Tanh, to gradually
increase pruning threshold to avoid accuracy degradation caused by
aggressive pruning.

V. THEORETICAL ANALYSIS ON PROPOSED ARCHITECTURE

In this section, we analyze the hardware utilization and compare
with previous architectures.

We derive a theoretical estimation of hardware utilization of the pro-
posed architecture, the SVD-based architecture [3], and the slimmed
TΣU -based architecture [20]. By comparing the hardware component
utilization, we show that theoretically our proposed architecture costs
fewer optical components than the SVD-based architecture and TΣU -
based architecture. The comparison results are summarize the in
Table I for clear demonstration.

For simplicity, we convert all area-costly components, i.e., 2 × 2
couplers, MZIs, and attenuators, to 3-dB directional couplers (DCs)
and phase shifters (PSs). Specifically, one 2×2 coupler can be taken as
one DC and two PSs, and one MZI can be taken as two DCs and one
PS. Since an attenuator can be achieved by a single-input directional
coupler with appropriate transfer factor, we count one attenuator as
one DC.
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Algorithm 1 Two-Phase Training Flow with Structured Pruning

Input: Initial parameter w0 ∈ Rp×q×k, pruning threshold T , initial
training timestep tinit, and learning rate α;

Output: Converged parameter wt and a pruning mask M ∈ Zp×q ;
1: M ← 1 . Initialize pruning mask to all 1
2: for t← 1, ..., tinit do . Phase 1: Initial training
3: Lt(wt−1)← Ltbase(w

t−1) + λ · LtGL(wt−1)
4: wt ← wt−1 − α · ∇wLt(wt−1)

5: end for
6: while wt not converged do . Phase 2: Structured pruning
7: for all wt−1

i,j ∈ w
t−1 do

8: if ||wt−1
ij ||2 < T then

9: M [i, j]← 0 . Update pruning mask
10: end if
11: end for
12: ApplyDropMask(M ,wt−1)

13: Lt(wt−1)← Ltbase(w
t−1) + λ · LtGL(wt−1)

14: wt ← wt−1 − α · ∇wLt(wt−1)
15: UpdateThreshold(T ) . Smoothly increase threshold
16: end while

TABLE I: Summary of hardware component cost on an m× n layer in
SVD-based ONN and our proposed architecture (size-k circulant blocks).
Most area-consuming components are considered. PS and DC represent
phase shifter and directional coupler.

#DC #PS
SVD-ONN m(m− 1) + n(n− 1) + max(m,n)

m(m−1)+n(n−1)
2

TΣU -ONN m(m− 1) + 2n+ max(m,n)
m(m−1)+2n

2

Our ONN mn(log2 k+1)
k

mn(2 log2 k+1)
k

Given an n-input, m-output layer, the SVD-based implementation
requires m(m−1)/2+n(n−1)/2 MZIs and max(m,n) attenuators
to realize the weight matrix. Therefore, with the aforementioned
assumption, the total number of components it costs is given by,

#DCSVD = m(m− 1) + n(n− 1) + max(m,n)

#PSSVD = m(m− 1)/2 + n(n− 1)/2.
(10)

For the slimmed TΣU -based ONN architecture [20], one unitary
matrix is replaced by a compact sparse tree network consisting of n
MZIs. Therefore, the component utilization of TΣU -based ONN is
given by,

#DCTΣU = m(m− 1) + 2n+ max(m,n)

#PSTΣU = m(m− 1)/2 + n.
(11)

For our architecture, each k×k circulant matrix costs k attenuators
and corresponding components required by k-point OFFT/OIFFT. The
following formulation gives the number of components for a k-point
OFFT/OIFFT.

#DCOFFT(k) = 2×#DCOFFT(k/2) + k/2 =
k

2
log2 k

#PSOFFT(k) = k(log2 k + 1)
(12)

A phase shift is physically meaningful only when it is within (−2π, 0]
as phases can wrap around. Hence, multiple successive phase shifters
on the same segment of a waveguide can be merged as one phase
shifter, which can be seen when comparing Fig. 2 and Fig. 3. Then
the total number of components used in our design to implement an
m× n weight matrix with size-k circulant sub-matrices is given by,

#DCOurs(k) =
m

k
×
n

k
× (2×#DCOFFT(k) + k)

=
mn

k
(log2 k + 1)

#PSOurs(k) =
m

k
×
n

k
× (2×#PSOFFT(k)− k)

=
mn

k
(2 log2 k + 1).

(13)

In practical cases, k will be set to small values, such as 2, 4, and
8. Given arbitrary values of m and n, the proposed architecture
costs theoretically fewer optical components than the SVD-based
architecture.

We also give a qualitative comparison with incoherent micror-
ing resonator-based ONNs (MRR-ONN). There are two MRR-ONN
variants. The first one is based on all-pass mircroring (MR) res-
onators [29]. The second one proposed later is based on the differ-
ential add-drop MR resonators [30]. We assume an M × N matrix
multiplication in the following tasks. Since the physical dimensions
of MRs are smaller than couplers and phase shifters in general, thus
a lower area cost can be expected for MRR-ONNs comapred with
ours. However, in terms of model expressivity, all-pass MRR-ONN is
much less than the other two, since it only supports positive weights.
Add-drop MRR-ONN and our architecture can support a full-weight
range without positive limitation. In terms of robustness, MRR-ONNs
are less robust since the MR resonaors are more sensitive to device
variations and environmental changes than phase shifters. Especially
for add-drop MRR-ONN, its differential structure amplifies the noise
on the MR transmission factor by 2 times on its represented weight.
Thus less robustness can be expected for MRR-ONNs. Furthermore,
in terms of power consumption, our architecture can benefit from
structured sparsity to obtain a much lower power, which will be
shown in later Experimental Results sections. In contrast, for MRR-
ONNs, even though a group of weights get pruned to zero values,
the corresponding MR resonators are not idle [29], [30], which means
its power consumption can barely benefit from pruning techniques.
Therefore, from the above qualitative analysis, though our architecture
demonstrates a relatively larger footprint than MRR-ONNs, we out-
perform them in terms of model expressivity, robustness, and power.

VI. EXTENSION TO OPTICAL CNN WITH LEARNABLE

TRANSFORMATIONS

To demonstrate the applicability of the proposed architecture, we
extend this architecture to a compact frequency-domain microdisk
(MD)-based optical convolutional neural network (CNN) with joint
learnability, where the convolutional kernels and frequency-domain
transforms are jointly optimized during hardware-aware training.

A. Microdisk-based Frequency-domain CNN Architecture

Given the two-dimensional (2-D) nature of photonic integrated
chips (PICs), currently we only demonstrate optical designs for
MLPs. Previous solutions to accelerate convolutional neural networks
(CNNs) are based on kernel sliding, convolution unrolling, and time
multiplexing [31], [32]. At each time step, the input feature chunks and
corresponding convolutional kernels are flattened as a one-dimensional
vector and fed into the ONNs to perform vector dot-product. Another
solution to solve this is to use im2col algorithm [29], [33], that
transforms convolution to general matrix multiplication (GEMM).
Convolutional kernels and input features are re-shaped as matrix-
matrix multiplication, which can be directly mapped on ONNs. Such
implementation is inherently inefficient as overlapped convolutional
patterns will create a huge amount of data redundancy in the unrolled
feature maps. In this work, we proposed to achieve CNNs with
a new ONN architecture equipped with learnable transformation
structures. Figure 6 demonstrates our proposed optical MD-based
CNN architecture featured by kernel sharing, learnable transformation,
and augmented frequency-domain kernel techniques. Multi-channel
input feature maps are encoded onto multiple wavelengths and input
into the learnable frequency-domain transforms, then split into mul-
tiple branches through the fanout network for parallel multi-kernel
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processing. Frequency-domain convolution is performed in the MD-
based kernel banks and the final results are transformed back to
the real domain via the reversed transforms. Note that we do not
include a detailed discussion on the pooling operations since they are
not the computationally-intensive parts in NNs. For example, optical
comparators can be used to achieve max-pooling. Average-pooling
can be implemented by a fixed-weight convolution engine based on
combiner-tree networks. Multiple layers can be cascaded through O-
E-O conversion. The phase information loss during photo-detection
can be fully modeled during training without harming the model
expressivity, which is actually a competitive substitute for ReLU
activation in the complex NN domain [34]. All of our experiments
in later sections model this phase removal during training, which
shows that this non-ideality induced by photo-detection does not cause
any accuracy loss. We will introduce details of the principles of the
designed optical CNN in the following section.

B. Kernel Weight Sharing

Modern CNN architectures, e.g., inception architecture [35], adopts
weight sharing to reduce the number of parameters in the convolutional
layers. For example, a 5× 5 2-D convolution involves 25 parameters.
It can be replaced by two cascaded lightweight 1 × 5 and 5 × 1
convolutions, which only contain 10 unique variables. Such a strategy
trains a low-rank convolutional kernel and can benefit its photonic
implements as it can be directly applicable to 2-D PICs, which is
visualized in Fig. 7.

C. Learnable Frequency-domain Convolution

Spatial domain convolution requires to slide the receptive field of
convolutional kernels across the input features. This could induce
hardware implementation difficulty and inefficiency as time multi-
plexing increases the latency and control complexity of photonic
convolution. we solve this issue by a parametrized frequency-domain
convolution method. As mentioned before, we decompose the 2-D
convolution as row-wise and column-wise 1-D convolutions through
weight sharing. For brevity, we focus on the column-wise frequency-
domain convolution in the following discussion. The same principle
also applies to the row-wise convolution. The column-wise convolu-
tion can be formulated as,

w ∗ x =T −1(T (w;φ)� T (x;φ);φ), (14)

where T (·;φ) is the learnable frequency-domain projection, and φ
represents the trainable parameters in it. This parametrized transforma-
tion enlarges the parameter space to compensate for the model expres-
siveness degradation induced by kernel weight sharing. Considering
the learnable transform as a high-dimensional unitary rotation, it is not
necessary to adopt an inverse transform pair to limit the exploration
space. To enable the maximum learnability of our trainable transform
structure, we relax the inverse transform to a reversed transform,

w ∗ x =Tr(T (w;φ)� T (x;φ);φr), (15)

where Tr has a reversed butterfly structure but is not constrained to
be the inverse of T .

We now discuss how our proposed trainable transform structures
can move beyond Fourier transform, thus enable hardware-aware
learnability. Fourier transform is a complex domain transformation
that is mathematically designed for frequency component extraction.
However, the Fourier transform is not necessary to be the best-
performed transformation that can be used in CNNs. Other manually
designed unitary transforms are also experimentally demonstrated to
have a similar ability for signal integration and extraction [36]. Hence,
we upgrade the fixed transformation structure to an adaptive structure
where all phase shifters are trainable. As mentioned in the Section V,
phase shifters in the same segment of waveguide can be merged
into one phase shifter. Therefore, to avoid redundant trainable phase
shifters, we re-design the learnable basic block, as shown in Fig. 8. For
the original transformation, two phase shifters φ1 and φ2 are placed
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on the input port of the directional coupler. The transfer function of
a learned basic block can be formulated as,

T (2) =
1
√

2

(
1 j
j 1

)(
ejφ1 0

0 ejφ2

)
=

1
√

2

(
cosφ1 + j sinφ1 − sinφ1 + j cosφ1

− sinφ2 + j cosφ2 cosφ2 + j sinφ2

)
.

(16)

In the reversed transformation structure, the basic block is the same as
used in the original transforms since the inverse basic block requires
a conjugate transposed transfer function which is not implementable
with this basic block. Based on this basic block, we recursively build
a trainable N -length transform with a butterfly structure, which can
be described as log2 N stages of projection, log2 N − 1 stages of
permutation, and a final extra group of phase shifters. The original
transformation, shown in Fig. 8(a), can be formulated as,

T (N) = D Blog2 N−1(N)

log2 N−2∏
i=0

Pi(N)Bi(N), (17)

where Bi(N) the i-th stage of butterfly projection, Pi(N) is the i-th
stage signal permutation, and the diagonal matrix D represents the
final extra column of phase shifters. The butterfly projection operator
B(N) is a diagonal matrix with a series of T (2) as its diagonal sub-
matrices,

B(N) =


T0(2) 0 · · · 0

0 T1(2) · · · 0

· · · · · · · · · · · ·
0 0 · · · TN/2−1(2)

 (18)

The index permutation operator Pi(N) can be expressed as a size-
N identity matrix with reordered rows. As shown in P0 and P1

in Fig. 8, the green entries represent 1, and other blank entries
represent 0. Note that the permutation operators in the reversed
structure is simply the reversed counterparts in the original structure,
i.e., Pi,ori(N) = PTi,rev(N). The reversed learnable transformation,
shown in Fig. 8(b), is designed to have reversed butterfly structure
which can be derived as follows,

Tr(N) = D
( log2 N−2∏

i=0

Br,i(N)Pr,i(N)
)
Br,log2 N−1(N). (19)

Note that the reversed transform is not guaranteed to be inverse to
the original transform, which requires particular phase configurations
discussed later.

Compared with its MZI-based counterparts, this trainable butterfly
transformation structure has a constrained projection capability as only
a limited set of unitary matrices can be implemented by it [37], [38].
As shown in unitary group parametrization, a full N -dimensional
unitary space U(N) has N(N − 1)/2 independent parameters,
while the butterfly structure substitutes part of parametrized unitary
matrices with fixed permutation operators. Hence, based on full
two-dimensional unitary matrices U(2), the butterfly structure has
2N log2 N independent parameters. Our proposed learnable block
T (2) is a reduced version of U(2), as it only covers half of the
full 2-D planar rotation space. The pruned transform space T ∗(2)
can be expressed as the conjugate transpose of T (2), which is not
implementable without waveguide crossings.

T ∗(2) =
1
√

2

(
0 −j
−j 0

)(
1 j

j 1

)(
ejφ1 0

0 ejφ2

)
(20)

Equivalently, our learnable transformation structure has N log2 N free
parameters.

D. Microdisk-based Augmented Kernels

To enable highly-parallel CNN architecture with reinforced model
expressiveness, we propose MD-based augmented convolutional ker-
nels with multi-level parallelism across input features, input channels
and output channels.

In our design, each 2-D convolutional layer consists of two cascaded
1-D frequency-domain convolutions along columns and rows. We will
focus on the column-wise convolution, and the same architecture
applies to its row-wise counterpart with an extra matrix transposition
operation. We denote the input feature map as I ∈ RCin×H×W , which
Cin, H,W represent the number of input channel, spatial height, and
spatial width, respectively. At time step t, The corresponding column
I:,t,: ∈ RCin×H×1 will be input into the optical CNN. Different input
channels are encoded by different wavelengths {λ0, λ1, · · · , λCin−1}.
Through the wide-band learnable transformation structure, we obtain
the frequency-domain features T (I:,t,:;φ). This stage enables parallel
transformation across the input channels. Then the optical signals car-
rying those features will be split into Cout planes for data reuse. Such
a multi-dimensional ONN design can be supported by state-of-the-art
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integration technology with multiple photonic chiplets [39]. In the
MD-based convolution stage, Cout×Cin×H all-pass MDs are used
to implement the frequency-domain kernels W ∈ RCout×Cin×H .
Given that the working principle of MD is primarily optical signal
magnitude modulation, our augmented kernels are trainable only in
the magnitude space without phase modulation. Each convolutional
core is designed to perform the convolution of one output channel.
This MD-based convolution is different from the previous EM stage
consisting of attenuators and phase shifters. First, all pass MDs can
only perform configurable magnitude modulation of the input signals
with fixed phase responses, which means the augmented kernels will
not expand over the entire complex space. Here we give the transfer
function of an MD,

Iout = W · Iin

cos θ =
a2 + r2 −W (1 + r2a2)

2(1−W )ar

φout = π + θ + arctan
r sin θ − 2r2a sin θ cos θ + ra2 sin θ

(a− r sin θ)(1− ra cos θ)
,

(21)

where Iin is the magnitude of the input light, Iout, φout are magnitude
and phase of the output optical signal, θ, a, r are the phase, self-
coupling coefficient, and coupling loss factor of an MD, respectively.
W is the transmitivity of the MD which corresponds to the trained aug-
mented kernel weight. Typically, parameter a and r are very close to 1.
Our proposed architecture enables another level of parallelism across
output channels. Given that different convolutional kernels share the
same input features, multiple MD convolution cores and reversed
transform structures will share one original transform structure for
hardware reuse and highly-parallel convolution.

A higher modeling capacity is enabled by our augmented kernel
technique. Instead of training spatial kernels w, we explicitly train
the latent weights W in the frequency domain without performing
T (w;φ) during training. The augmented latent weights W will
not meet the conjugate symmetry constraint as its spatial-domain
counterparts are not real-valued. Hence, this enables a potentially
infinite solution space in the spatial kernel space with various kernel
sizes and shapes.

We briefly discuss the scalability of this WDM-based highly-parallel
architecture. WDM plays an important role in the high parallelism of
our proposed frequency-domain optical CNN. Currently, the widely
acknowledged maximum number of wavelength in the single-mode
dense-WDM (DWDM) is over 200 [40]–[42]. This means in our
architecture, the number of input channels Cin that can be processed
in parallel is over 200 if a single mode is adopted, which can support
most modern CNN architectures. Since different modes of optical
signals can also propagate through a multi-mode waveguide indepen-
dently, the capacity of DWDM can be further extended in another
dimension. If M different modes of optical signals are adopted,
the number of parallel input channels can be extended by another
M times, where M can be up to 10 given the current technology.
Therefore, the potential input-channel-wise parallelism that we can
provide is enough for most modern CNN applications.

E. Discussion: Exploring Inverse Transform Pairs in Constrained
Unitary Space

In manually designed frequency-domain convolution algorithms,
domain transformation will be designed to be inverse, e.g., FFT
and IFFT. This implies an inverse constraint between two mutually-
reversed transform structures T and Tr . To be able to realize trainable
inverse transform pairs, we add unitary constraints to our learnable
transform structures,

Tr(·,φr) = T −1(·;φ). (22)

Fig. 9: Training curve of inverse loss Linv and mean square error between
trained phase configurations and theoretical 4-point OFFT settings.

Inverse constraints typically can be addressed via adding a regulariza-
tion term in training,

Linv = ‖UrU − I‖2. (23)

However, this requires explicit transfer matrices of T and Tr to
compute this regularization term [43], which is memory-intensive
and computational expensive as indicated by Eq. (18), Eq. (19). We
propose an efficient regularization method to exert inverse constraint.

Linv = ‖Tr(T (e))− e‖2, e ∈ CN , (24)

where e is the orthonormal bases of N -dimensional complex space.
Notice that if Tr(T (e)) = e, then for any x = αTe the following
statement holds,

Tr(T (x)) = Tr(T (αT e)) = αT Tr(T (e)) = x. (25)

Thus transforms T and Tr are inverse transforms once the regular-
ization loss reaches 0. This surrogate method reduce the computation
complexity from O(N2 log2 N) in Eq. (17) to O(N log2 N), where
diagonal matrix multiplication with B(N) is simplified by 2× 2 sub-
matrix multiplication with T (2).

Using our proposed inverse pair regularization method, we show
that our trainable transform T can efficiently learn Fourier transform
by setting Tr as OIFFT. Figure 9 demonstrates that the trainable
transform will quickly converge to the theoretical OFFT as the mean
square error between trained phase settings and target phase shifter
settings reduces to 0 when the loss converges.

F. Discussion: Hardware-aware Pruning for Trainable Transforms

In this section, we demonstrate that our proposed trainable trans-
form has excellent compatibility with hardware-aware pruning tech-
niques. Compared to the fixed manual design of frequency-domain
transforms, e.g., OFFT, our pruned trainable transform can potentially
improve power consumption and noise-robustness by eliminating a
proportion of configurable devices in a hardware-aware way. In Fig. 8,
a column of phase shifters are located in an aligned placement style to
guarantee light path coherency. Those thermo-optically configurable
phase shifters contribute to a large proportion of on-chip energy
consumption and nearly half of the chip area [44], [45]. In the FFT
transform, a majority of phase shifters are non-zero degrees; thus
the power consumption is under-optimized. Moreover, Even though
there could be several arbitrary zero degree phase shifters in FFT
transforms, they are arbitrarily located in the structure, the removal
of which barely saves any chip area considering the aligned device
placement. Therefore, pruning an entire column of phase shifters will
physically improve both area and energy cost. We adopt a phase-
wrapping Group Lasso regularization similar to Eq. (2) together with
incremental pruning technique to slim the trainable transforms targeted
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at lower area cost and lower power consumption. The proposed phase-
wrapping Group Lasso (PhaseGL) is formulated as,

LPhaseGL =

G∑
g=0

√
1/pg‖φg − φ∗g‖2,

φ∗g,i =

{
0, φg,i ∈ [0, π), 0 ≤ i < pg

2π, φg,i ∈ [π, 2π), 0 ≤ i < pg ,

(26)

where φg is a column of phase shifters and this regularization term
encourages phases towards their corresponding prunable targets φ∗g .
G is the total columns of phase shifters, which is (log2 N + 1) for
a length-N transform. Once the group lasso of a column falls below
a threshold TT , the entire column of phase shifters are pruned. The
ratio of pruned columns to all phase shifter columns is called transform
sparsity (T sparsity), defined as,

sT =
|{φg|

√
1/pg‖φg − φ∗g‖ < TT }|

G
.

Our proposed regularization and pruning strategy improves area cost
as an entire column of phase shifters are pruned to save chip area in the
actual layout. Furthermore, power consumption can also be improved
as the total power consumption for trainable transform structures
can be estimated as PT ∝

∑
φ. This phase-wrapping pruning also

improves the tolerance to noise for two aspects, considering there
are manufacturing variations in the phase shifter [45], [46]. First,
fewer noise sources eventually introduce smaller error when device-
level noises are considered in the physical implementation [20], [46].
Second, given the quadratic relationship between phase shift and
voltage controls, expressed as φ = γv2, smaller phases will be less
sensitive to γ noise [45].

G. Discussion: Hardware Cost of the Proposed MD-based Optical
CNN

We give a summary on the hardware component usage of the
proposed MD-based optical CNN architecture in Table. II. Our ar-
chitecture shares the original transform among multiple kernels to
save area. Our proposed pruning technique can regularly sparsify
the transform structures for further area reduction. The MD-based
convolution stage is very compact since the footprint of an MD is
two-order-of-magnitude smaller than a DC. In contrast, the SVD-based
ONN costs H(C2

out+C
2
in×K4) DCs and H(C2

out/2+C2
in×K4/2)

PSs to achieve the same latency with our architecture, i.e., H forwards
to finish a convolutional layer, where K is the spatial kernel size.
For example, if we set H=64, Cin=Cout=32, K=3, sT =0.5, our
architecture uses >370× fewer DCs and >180× fewer PSs than the
single-wavelength SVD-based ONN. If SVD-based ONNs also use
WDM techniques for higher parallelism with the same number of
wavelength as ours, i.e., 32, we still outperform theirs by 11.6× fewer
DCs and 5.6× fewer PSs. Hence, our frequency-domain CNN archi-
tecture outperforms previous MZI-ONNs with higher computational
efficiency and better scalability by a large margin.

VII. EXPERIMENTAL RESULTS

We conduct numerical simulations for functionality validation and
evaluate our proposed architecture on the hand-written digit recog-
nition dataset (MNIST) [28] with various network configurations.
Quantitative evaluation shows that our proposed architecture outper-
forms the SVD-based and TΣU-based ONN architectures in terms
of area cost without any accuracy degradation. We further evaluate
our proposed MD-based optical CNN architecture and demonstrates
its superior power reduction and robustness improvement on MNIST
and FashionMNIST [50] dataset.

TABLE II: Hardware cost summary on the proposed MD-based opti-
cal CNN architecture. The input feature map is of size H×W ×Cin,
the number of output channels is Cout, and the sparsity of the learnable
transforms is sT ∈ [0, 1]. For simplicity, we assume H = W , which is
a widely used configuration for most CNNs. Given the ultra-compact
footprint of an MD, e.g., 5×5 µm2 [47], we count 100 MDs as one DC
in the area estimation. The row-wise and column-wise convolutions
are both counted in this table.

Structure Hardware Cost
T H log2H DCs + 2sT H(1 + log2H) PSs

Kernel 2HCinCout MDs≈ H
50
CinCout DCs

Tr H log2HCout DCs + 2sT H(1 + log2H)Cout PSs
Total ≈ H(log2H + Cin

50
)Cout DCs + 2sT H(1 + log2 H)Cout PSs

TABLE III: Optical component sizes used in the area estimation.

Optical Component Length (µm) Width (µm)
3-dB Directional Coupler [3] 54.4 40.3
Thermo-optic Phase Shifter [44] 60.16 0.50
2-to-1 Optical Combiner [48] 20.00 3.65
Waveguide Crossing [49] 5.9 5.9

A. Simulation Validation

To validate the functionality of our proposed architecture, we
conduct optical simulations on a 4× 4 circulant matrix-vector multi-
plication module using Lumerical INTERCONNECT tools. First, we
encode a 4× 4 identity weight matrix into our architecture and input
4 parallel optical signals to validate its functionality. For brevity, we
plot several different representative cases in Fig. 10a. It shows that
our designed architecture can correctly realize identity projection.
Further, we randomly generate a length-4 real-valued weight vector
w = (0.2,−0.1, 0.24,−0.15) to represent a circulant matrix, and
encode F(w) = (0.19e0j , 0.064e−2.246j , 0.69e0j , 0.064e2.246j) into
attenuators and phase shifters in the EM stage. The simulation results
in Fig. 10b show good fidelity (< 1.2% maximum relative error) to
the ground truth results.

B. Comparison Experiments on FFT-based ONNs

To evaluate our proposed ONN architecture, we conduct a com-
parison experiment on a machine learning dataset MNIST [28], and
compare the hardware utilization, model expressivity among four ar-
chitectures: 1) SVD-based architecture [3]; 2) TΣU-based architecture
[20]; 3) Ours without pruning; 4) Ours with pruning.

For the SVD-based ONN, we simply train an original MLP since
this architecture directly implements matrix multiplication in the fully-
connected layer. In the TΣU-based architecture, training is performed
on a sparse matrix T designed for dimensionality matching, a diagonal
matrix Σ, and a pseudo-unitary matrix U with unitary regularization.
This architecture eliminates one of the area-cost unitary matrices and
adopts a sparse-tree T to match dimensionality. The orthogonality
constraint of U is first relaxed with unitary regularization in the
training and satisfied by post-training unitary projection [20].

We implement the proposed architecture with different configura-
tions in PyTorch and test the inference accuracy on a machine with
an Intel Core i9-7900X CPU and an NVIDIA TitanXp GPU. We
set λ to 0.3 for the Group Lasso regularization term, initialize all
trainable weights with a Kaiming-Normal initializer [51], adopt the
Adam optimizer [52] with initial learning rate=1× 10−3 and a step-
wise exponential-decay learning rate schedule with decay rate=0.9.
We use the ideal rectified linear units (ReLU) activation function as
nonlinearity. All NN models are trained for 40 epochs with a mini-
batch size of 32 till fully converged. Figure 11 plots the test accuracy
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TABLE IV: Comparison of inference accuracy and hardware utilization on MNIST dataset with different configurations. For example, configuration
(28×28)-1024(8)-10(2) indicates a 2-layer neural network, where the first layer has 784 input channels, 1024 output channels with size-8 circulant
matrices, and so on.

Network Configurations Block Sparsity #Parameter Accuracy #DC #PS Area (cm2)

Model 1

SVD [3]: (28×28)-400-10 0.00 318 K 98.49% 934 K 467 K 20.62
TΣU [20]: (28×28)-400-10 0.00 318 K 98.49% 777 K 388 K 17.15
Ours w/o Prune: (28×28)-1024(8)-10(2) 0.00 105 K 98.32% 412 K 718 K 9.33
Ours w/ Prune: (28×28)-1024(8)-10(2) 0.40 63 K 98.26% 244 K 425 K 5.53

Model 2

SVD [3]: (14×14)-70-10 0.00 14 K 96.93% 48 K 24 K 1.07
TΣU [20]: (14×14)-70-10 0.00 14 K 96.93% 44 K 22 K 0.97
Ours w/o Prune: (14×14)-256(4)-10(2) 0.00 14 K 96.93% 40 K 67 K 0.90
Ours w/ Prune: (14×14)-256(4)-10(2) 0.45 8 K 96.91% 22 K 36 K 0.49

Model 3

SVD [3]: (28×28)-400-128-10 0.00 366 K 98.58% 967 K 483 K 21.35
TΣU [20]: (28×28)-400-128-10 0.00 366 K 98.58% 794 K 396 K 17.52
Ours w/o Prune: (28×28)-1024(8)-128(4)-10(2) 0.00 134 K 98.53% 501 K 868 K 11.34
Ours w/ Prune: (28×28)-1024(8)-128(4)-10(2) 0.39 81 K 98.43% 289 K 517 K 6.77

Model 4

SVD [3]: (14×14)-160-160-10 0.00 59 K 97.67% 141 K 70 K 3.10
TΣU [20]: (14×14)-160-160-10 0.00 59 K 97.67% 91 K 45 K 2.00
Ours w/o Prune: (14×14)-256(4)-256(8)-10(2) 0.00 22 K 97.67% 73 K 123 K 1.64
Ours w/ Prune: (14×14)-256(4)-256(8)-10(2) 0.37 14 K 97.52% 47 K 79 K 1.05

(a)

(b)

Fig. 10: (a) Simulated output intensities (crosses) and ground truth
(circles) of a 4×4 identity circulant matrix-vector multiplication. (b)
Simulated output intensities (crosses) and ground truth (circles) of a 4×4
circulant matrix-vector multiplication, with w=(0.2,-0.1,0.24,-0.15). E.g.,
(0,0,1,1) is the input signal.

and sparsity curves as training proceeds. The first 5 epochs are the
initial training phase. After that, the model has roughly converged.
In the subsequent structured pruning phase, we apply our incremental
pruning strategy. In each iteration, we set any weights in the EM stage
to zero once their Group Lasso falls below the threshold. Then, we
adopt a step-wise function to smoothly increase the threshold T after
each epoch finishes.

The structured sparsity for our proposed FFT-based MLP is de-
fined as the percentage of pruned parameters in all parameters, i.e.,
|{w|‖wij‖2 < T}|/|w|. We call it block sparsity. We can see that
every time sparsity increases, the test accuracy decreases accordingly
and then fully recovers during the next training epoch. This alternate
pruning and re-training mechanism incrementally improves sparsity
while minimizing accuracy loss.

For a fair comparison, all architectures are trained with the same
hyper-parameters and have similar test accuracy in each experiment
configuration. To estimate the component utilization and area cost, we
adopt exactly the same type of photonic devices in all architectures, as
listed in Table III, and accumulate the area of each optical component
for approximation. Placement or routing information is not considered

Fig. 11: Training curve of the proposed architecture with setup of
(28×28)-1024(8)-10(2).

in our estimation.
In Table IV, the first column indicates different neural network

configurations. For example, (14×14)-256(4)-10(2) describes a 2-layer
network, with 196 input channels, 256 output channels in the first layer
(k=4), and 10 output channels in the second layer (k=2). The TΣU-
based architecture adopts a unique training methodology and claims
to have small accuracy degradation (< 1%) [20], thus we assume it
has approximately the same accuracy as the SVD-based architecture.
In the TΣU-based architecture, the total number of MZIs used to
implement an m× n weight matrix is bounded by n(n+ 1)/2.

Among various network configurations, our proposed architecture
outperforms the SVD-based architecture and the TΣU-based architec-
ture with lower optical component utilization and better area cost. We
normalize all areas to our architecture with pruning applied and show
the normalized area comparison in Fig. 12. Consistent with analytical
formulations in Section V, the experimental results show that, as the
difference between input and output channels for each layer in the
original MLPs gets larger, our proposed architecture can save a larger
proportion of optical components. Specifically, fully-connected layers
with highly-imbalanced input and output channels, e.g., ((28×28)-
400-10), could benefit the most by using our proposed architecture. For
MLPs with nearly-square weight matrices, e.g., ((14×14)-160-160-
10), although the area gap is decreasing, our proposed architecture still
shows superior area efficiency. This is because FFT-based structured
matrix multiplications can reduce many parameter redundancies and
save components while still maintaining model expressivity. Fur-
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Fig. 12: Normalized area comparison with different model configurations.
Model 1-4 refer to Table IV. SVD refers to [3] and TΣU refers to [20].

thermore, ablation experiments on our structured pruning method
validate the effectiveness of the proposed two-phase training flow.
It can save an extra 30-50% optical components with negligible
model expressivity loss. Even though the area cost is generally not
where optical neuromorphic systems excel, their ultra-low latency
and low power consumption make them very promising NN inference
accelerators, e.g., in data centers. Therefore, by introducing an area-
efficient and pruning-compatible ONN architecture, our work enables
more compact ONN implementations without accuracy degradation.

C. Comparison Among Different Trainable Transform Settings

As mentioned in previous sections, we extend our ONN architecture
to MD-based CNNs with trainable frequency-domain transforms. We
will demonstrate several experimental evaluations on our proposed
MD-based CNN architecture.

First, we discuss how different transform settings impact the CNN
performance. Recall that our frequency-domain optical CNN archi-
tecture decomposes 2-D convolution into row-wise and column-wise
1-D frequency-domain convolutions. Each 1-D convolution involves
original and reversed transforms, thus total four transforms are train-
able for each convolutional layer, denoted as Trow, Trow,r, Tcol, Tcol,r .
Motivated by manual designs of frequency-domain transform, we
observe that the row-wise and column-wise 1-D transforms typically
share the same transform pair such that the combination of them will
be equivalent to their 2-D counterparts. Moreover, the transfer between
spatial and frequency domains are designed to be inverse pairs, e.g.,
FFT and IFFT. Those two successful design priors motivate us to
investigate whether transform sharing and inverse pair constraint will
benefit frequency CNN performance.

Therefore we evaluate the performance of four different transform
settings on MNIST dataset: (1) four transforms are trained indepen-
dently (AllFree); (2) Column-wise and row-wise convolutions share
the same transform as Trow = Tcol, Trow,r = Tcol,r (Shared); (3)
Reversed transforms are constrained to be close to the inverse trans-
form as Trow,r ≈ T −1

row, Tcol,r ≈ T −1
col (Inverse); (4) Transforms

are shared between column-wise and row-wise convolutions and the
inverse constraints are applied (InvShared).

Our CNN configuration is 16 × 16 − C16 − BN − ReLU −
MaxPool−F32−ReLU−F10, where C16 represents convolution
with 16 output channels, BN represents batch normalization, F32
represents fully connected layers with 32 neurons. Feature maps are
reduced to 5×5 after Maxpooling, and input images are downsampled
to 16× 16. Table V shows the comparison results.

Based on the results, we observe that the inverse constraint and
shared transform produces no benefits in terms of inference accuracy.
Training the original and reversed transforms across row-wise and
column-wise convolutions independently offers the best results. Thus,
we will use AllFree transform settings for our experiments.

TABLE V: Accuracy comparison among four trainable transform set-
tings.

Settings AllFree Shared Inverse InvShared
Test Accuracy 96.88% 96.13% 96.41% 96.40%

TABLE VI: Transform sparsity (T sparsity) and power consumption
comparison among optical FFT and our trainable transform with hardware-
aware pruning on MNIST and FashionMNIST dataset. T sparsity repre-
sents how many columns of phase shifters are pruned in our trainable
frequency-domain transforms. The power consumption assumes maximum
parallelism across output channels, thus 1 original transform and Cout
reversed transforms are counted for each layer. For the MNIST dataset,
we adopt the ONN configuration as 16×16-C16-BN-ReLU-MaxPool5-
F32-ReLU-F10, and for the FashionMNIST dataset we set the ONN
configuration as 16×16-C24-BN-ReLU-MaxPool6-F64-ReLU-F10. The
power consumption is estimated by the sum of phase shifts given that
the phase shift is proportional to the thermal tuning power, i.e., φ ∝ v2.
Other power consumption sources, e.g., insertion loss, are not considered
for simplicity.

Dataset Transform OFFT Trainable (Pruned)

MNIST [28] T Sparsity 0% 88.2%
Normalized Power 100% 18.4%

FashionMNIST [50] T Sparsity 0% 88.4%
Normalized Power 100% 15.5%

D. Comparison with Hardware-aware Transform Pruning

To jointly optimize classification accuracy and hardware cost in
terms of area, power, and robustness, we perform hardware-aware
pruning assisted by phase-wrapping Group Lasso regularization to our
proposed trainable transforms. The weight for LPhaseGL is 0.05, and
we set 10 epochs for the first pretraining phase and 40 epochs for
incremental structured pruning.

1) Power Consumption Evaluation: We calculate the energy cost by
summing all phase shifts as they are proportional to power consump-
tion, and show the energy saved by our pruned transforms in Table VI.
We gradually increase the pruning threshold from both 0 degree
and 2π degree sides, and pruned 88.2% columns of phase shifters
with maximum output channel parallelism. Through this pruned
transform, we save 81.6% power consumption compared with optical
FFT structure. We also evaluate the power consumption by applying
pruned trainable transform in our block-circulant matrix based MLP
architecture. The block sparsity, transform sparsity T sparsity, power
consumption, and area cost are estimated in Table VII. Therefore, our
energy-saving and area-efficient ONN architecture is more suitable
for resource-constrained applications, e.g., edge computing and online
learning tasks [53], [54].

2) Variation-Robustness Evaluation: To evaluate the noise-
robustness of the frequency-domain transform, we inject device-level
variations into phase shifters to introduce phase programming errors
and demonstrate the accuracy and its variance under different noise
intensities σ on MNIST and FashionMNIST dataset. Specifically, we
inject Gaussian noise ∆γ ∼ N (0, σ2) into the γ coefficient of each
phase shifter to perturb its phase response φn = (γ + ∆γ)v2, where
γ is calculated by the voltage that can produce π phase shift as
γ = π/v2

π and we adopt 4.36V as the typical value of vπ [3], [45].
Figure 13 shows that ∼ 80% structured sparsity can be achieved
by our phase-wrapping pruning method, and our pruned trainable
transform outperforms the OFFT structure with over 80% power
reduction and much better robustness under various noise intensities.

We also evaluate the robustness on our circulant-matrix-based
MLP architecture. Figure 14 compares the phase shifter gamma
noise robustness among 1) SVD-based ONNs, 2) optical FFT-based
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TABLE VII: Comparison of block sparsity, frequency-domain transform
(T ) sparsity, normalized power consumption, and estimated area (cm2)
among 1) SVD-based ONN, 2)TΣU -based ONN, 3) optical FFT, 4)
our trainable transform without pruning transforms, and 5) our trainable
transform with hardware-aware pruning on MNIST dataset. SVD-based
and TΣU -based ONN configuration is 28 × 28 − 400 − 10, and ours is
28× 28− 1024(8)− 10(2). All ONNs have a similar inference accuracy
with a 0.5% accuracy discrepancy among all architectures. Block sparsity
is for pruned circulant blocks. T sparsity is for pruned trainable frequency-
domain transforms. The power consumption is normalized to SVD-based
ONN, which is estimated by the sum of all phase shifts given that the
phase shift is proportional to the thermal tuning power, i.e., φ ∝ v2.

Architecture Block Sparsity T Sparsity Power Area (cm2)
SVD-based [3] - - 100% 20.62
TΣU -based [20] - - 83.1% 17.15
Ours-OFFT [25] 0.40 0.00 98.9% 5.53
Ours-Trainable 0.71 0.00 79.9% 2.54
Ours-Trainable 0.66 0.96 9.9% 2.99

(a) (b)

Fig. 13: Robustness comparison among OFFT and pruned trainable
transform on MNIST and FashionMNIST dataset. Error bar is drawn to
show the ±1σ accuracy variance from 20 runs. For MNIST dataset, we
adopt the ONN configuration as 16×16-C16-BN-ReLU-MaxPool5-F32-
ReLU-F10, and for FashionMNIST dataset we set the ONN configuration
as 16×16-C24-BN-ReLU-MaxPool6-F64-ReLU-F10.

architecture, and 3) optical trainable transform-based architecture with
transform pruning. The SVD-based architecture shows severe accuracy
loss due to phase error amplification effects within its MZI arrays [3],
[45], [46]. We do not show accuracy below 90% for clear demon-
stration. Our FFT-based architecture and trainable transform based
architecture both benefit from superior noise robustness due to their
structured sparsity and blocking design. The high sparsity removes
a large proportion of noise sources, i.e., thermo-optic phase shifters,
and the block-circulant structure partitions the weight matrix to avoid
correlated error propagation among different weight blocks [45].

Fig. 14: Robustness comparison on MNIST among SVD-based ONN,
optical FFT-based architecture, and trainable transform based architecture
with transform pruning. Error bar is drawn to show the ±1σ accuracy
variance from 20 runs. We adopt the SVD-based ONN configuration as
28× 28− 400− 10 and our architecture as 28× 28− 1024(8)− 10(2).

VIII. CONCLUSION

In this work, we propose a hardware-efficient optical neural network
architecture. Our proposed ONN architecture leverages block-circulant
matrix representation and efficiently realizes matrix-vector multipli-
cation via optical fast Fourier transform. This architecture consists of
five stages, including splitter tree, OFFT, element-wise multiplication,
OIFFT, and combiner tree. Compared with the previous SVD-based
and TΣU-based ONN architectures, the new design cuts down the opti-
cal component utilization and improves area cost by 2.2∼3.7× among
various network configurations. Our proposed two-phase training flow
performs structured pruning to our architecture and further improves
hardware efficiency with negligible accuracy degradation. We extend
the proposed architecture to an optical microdisk-based frequency-
domain CNN, and propose a trainable transform structure to enable
a larger design space exploration. We demonstrate structured pruning
to our trainable transform structures and it achieves less component
usage, over 80% power reduction in CNNs, over 90% power reduction
in MLPs, and much better variation-robustness under device-level
noises than prior work.
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