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Abstract—Photonic integrated circuit (PIC), as a promising
alternative to traditional CMOS circuit, has demonstrated the
potential to accomplish on-chip optical signal transmission
and computations in ultra-high speed and/or low power
consumption. One of the critical challenges of PIC, however,
is that its scalability and robustness are limited by cascaded
optical power loss and noise error. In this paper, we analyze
the scalability and noise robustness challenges facing photonic
integrated circuits, for two representative PIC applications:
logic computing and neural networks. Automated design
algorithms and learning methodologies are proposed to resolve
these issues.

I. INTRODUCTION

Computing on photonic integrated circuit (PIC) has been

reignited as a promising alternative to traditional CMOS

electronics as Moore’s law winds down. By leveraging

the property of light to process information, where the

information is in the form of optical signals sourced by

optical lasers and detected by photo-detectors, photonics

has demonstrated the potential to accomplish ultra-high

speed and/or low power consumption for on-chip signal

transmission and computation [1], [2]. Compared with

computing, optical interconnects have been more intensively

investigated, which manifests the advantages over metal

interconnects especially in intra- and inter-chip communi-

cations [2]–[5].

To catch up with the advancement with optical intercon-

nects, previous works on optical computing have demon-

strated upon two computing paradigms: digital and analog

computing. Digital optical computing performs boolean

logic, where optical switches serve as the core of this

paradigm. Analog optical computing, on the other hand,

interprets light signals as continuous values in the real

or complex domain and performs analog-style comput-

ing using linear optics. As for optical logic applications,

concentrated study has been performed on basic bitwise

operations such as (N)AND, (N)OR and X(N)OR gates

[6], [7], algebraic functions such as 1-bit half and full

adders [8]–[10] and switchers [11]–[13]. In order to im-

plement general and larger-scale logic functions and pave

the way for design-space exploration, automated design

methods are proposed based on various schemes: from

virtual gates [14], to more recently, and-inverter gate (AIG)

[15] and binary decision diagram (BDD) [14], [16]–[19].

However, as optical devices lack the capability of logic-

level restoration and signal isolation as CMOS transistors,

functional cascadability turns out to be very limited. For

example, each splitter of virtual gate-based schemes and Y-

branch combiner of AIG and BDD-based schemes produce

a −3dB loss which is cascaded and inevitably leads to an

extremely weak output signal indistinguishable from noises.

The power loss is thus a key reason for low signal-to-

noise ratio (SNR). As the integration advances, crosstalk

noise also becomes a critical issue facing signal integrity.

The crosstalk noise has already been revealed in large-

dimensional optical routers [20] and it would be important

to revisit the solutions in the new context of computing.

Last but not least, the garbage outputs mentioned in [16]

also leads to a degraded SNR.

As for analog computing applications, research efforts

have been made on matrix multiplication [21]–[24], and

optical neural networks (ONNs), evolving from the former

[25], [26]. ONN distinguishes itself by directly exploit-

ing linear optics to perform neuromorphic operations and

demonstrated both speed and power efficiency moving

beyond von Neumann architecture. For electronics, matrix

multiplication, the core and performance-critical compu-

tation of neural networks, is a computationally expensive

operation; while with optics, it can be performed with near-

zero energy using Mach-Zehnder interferometers (MZIs), as

successfully demonstrated on chip in [25]. Furthermore, as

optical signals can transports in the same channel in parallel

via wavelength-division multiplexing (WDM), this also

brings the potential of scaling the computation bandwidth

by tens of times. However, same as logic computing PICs,

ONNs bear on the challenges of scalability and robustness.

On one hand, scalability is inevitably impeded by the

inherent size of optical devices such as MZIs. This problem

deteriorates as the scale of neural network models keeps

increasing to accommodate ever more complex applications.

On the other hand, robustness also becomes more and more

critical due to the scale-up. Specifically, since the phase

of each MZI is highly impacted by environmental change,

thermal crosstalk, and imperfect manufacturing, the phase

error is cascaded throughout the computation. As discussed

in [25], the accuracy could be aggravated by 20% for

small ONN applications. Preliminary research has studied

a slimmed architecture to reduce the size by reducing the

number of MZIs [26]. It is also interesting to notice that,

when applied phase noise on each MZI, a smaller ONN

also show better robustness.

As can be concluded, robustness and scalability have

been the two major obstacles of building large scale and
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practical optical computing circuits. They are also deeply

correlated in the context of optical computing due to the

cascaded power loss and/or noise error, engendered by the

lack of signal restoration and isolation in optics. This paper

studies the two issues for two representative optical comput-

ing paradigms. The paradigms have shared problems while

demonstrating their unique features that require different

ways to approach. As for optical logic circuit, we discuss

automated design techniques by introducing restoration

using OE/EO converters. For optical neural network, we

studied the noise sensibility under different situations. Auto-

mated learning and co-design methodologies are presented

to compensate for both issues.

The remainder of this paper is organized as follows.

Section II discusses the scalability and robustness issues

of optical logic circuit and proposes an automated design

method using OE/EO converters. Section III focuses on

optical neural networks, providing a wide range of char-

acterizations and potential solutions. The paper is finally

concluded in Section IV.

II. OPTICAL LOGIC CIRCUITS

In this section, we study the first application of optical

computing: optical boolean logic. The scalability and ro-

bustness issues of optical logic circuits are mainly due to

optical power depletion. is a major obstacle to build com-

plicated systems. As demonstrated in the previous synthesis

methodologies [10], [14], [16], [17], optical devices lack the

capability of signal restoration and input-output isolation as

its CMOS counterparts, optical signal inevitably diminishes

throughout the computation and become indistinguishable

from environmental noise. One solution is to redistribute

the power by logic rewriting [17], however, the method has

limited effectiveness in terms of the potential to improve

both the scalability and robustness, even if the overhead is

not constrained. In this section, we highlight another more

method which introduces optical OE/EO converter into the

synthesis flow for signal restoration. The current state-

of-the-art integrated OE/EO converter can achieve highly

efficient [12], [27], [28] signal conversion. Distinguished

to the previous method [17], this method guarantees the

improvement of both criteria with the increase of the

overhead budget. In intuition, consider the extreme case if

we apply the restoration at every waveguide between any

two devices to compensate for the loss, the resultant power

depletion can be minimized to 0.

A. Optical Power Depletion and Noise Robustness

We start with the background of the classic optical

synthesis method based on binary decision diagram (BDD)

[16], [17], [19], [29]. A BDD is a directed acyclic graph

that can represent a boolean function. As an example in

Figure 1a, BDD has two types of nodes, the terminal node

and decision node. A 1-terminal node, representing the

functional output evaluation to be logic 1. A decision node

is functionally a 1× 2 crossbar switch, which is controlled
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Figure 1: BDD and the corresponding optical implementa-

tion.

Figure 2: Power distribution of a typical optical Y-branch

combiner.

by a decision variable. The solid (dashed) edges correspond

to an assignment of the variable to be 1 (0). The classic

BDD-based synthesis is demonstrated in Figure 1b. The

light (λ) from a laser source (or from the output of the

previous optical network) is streamed from the BDD top

node to the 1-terminal, where a photodetector (PD) (or

optical amplifier to the next computation stage) is located.

The synthesis replaces each BDD node by an optical 1× 2
crossbar, each controlled by a primary input. Waveguides

and combiners are used to connect the crossbars. When

there are multiple inputs to a crossbar, optical combiners

(CB) are used to merge the inputs. The output of the optical

network is a logical 1, if the PD detects light at the 1-

terminal, otherwise it is a logical 0.

The classic BDD-based implementation suffers from cas-

cading optical power loss as the single input caused intrinsic

combiner loss and is thus prohibited from building larger-

scale functionalities. As shown in the simulated power

distribution in Figure 2, the Y-branch takes light from the

two ports on the right side and passes light to the left. In

the first figure, if two input ports have light, the output

power doubles each of the input power and there is almost

zero loss. In the second and third figures, if only one input

has light, due to the mode mismatch, half of the light

escape from the waveguide to the free space. Therefore,

there will be a -3dB (50%) power loss at the output.

The latter is the only case in BDD-based implementation.

The loss cascaded inevitably leads to an extremely weak

output signal indistinguishable from noises. Other sources

of optical power loss of optical logic circuits include optical

switch loss, waveguide propagation, and crossing loss. As

the latter is dependent on final physical placement and

routing, in this work, we focus on the optical loss induced

by optical switches and combiners. The proposed method

can be adapted to other various loss sources. The type of



switches and choice of platforms is also not restricted.

We use L to denote the absolute optical power loss in dB.

In a BDD-based optical network, L can be defined for the

node v as an optical switch (Lv), edge as an input branch

of a combiner (L(u,v)), path as a sub-network (Lv→u), or

the whole network (Lnet). The path loss is calculated by

adding the loss of all the components including combiners,

couplers and switches, along the path. The network loss is

defined as the greatest loss of all the paths from the network

input (BDD top node) to the network output (BDD terminal

node). Our goal of the synthesis is to improve the network

loss by using OE/EO converter to provide boosted optical

power at selected locations of a network.

B. Optical Power Restoration

Given a certain optical power loss goal G > 0 in dB, the

optical loss restoration problem is defined as:

Minimize R =

|E|∑
i=1

xi (1)

s.t. Lnet < G (2)

xi ∈ {0, 1}, ∀i (3)

Each boolean variable xi represents an assignment of

restoration for a critical edge ei. If xi is 1, then an OE/EO

converter is assigned to this edge; otherwise, the edge is not

assigned any converter. The objective R is the number of

OE/EO converters for restoration. Equation (2) states the

power loss of the whole BDD network, which is defined

by the minimum of all the path efficiency factor, is smaller

than the given target G. Note that each converter has a

determined detection threshold th measured in dB. As

shown in Figure 3a, the insertion of converters at two edges

boosts each power to the EO converter source power. The

boosting value of a converter inserted at an edge is equal to

the path loss ending at this edge. The converter threshold is

determined by both the device detection limitation and the

environmental noise. If the power loss from the top node

to some point is greater than th, the converter is not able

to be applied.

We propose a simple algorithm to this problem detailed

in Algorithm 1. As a start, the critical paths are computed

based on their power loss and the target G [30]. Then

we check each edge on the critical path, from top to

bottom, whether the threshold condition can be satisfied.

If it is the case, we apply the OE/EO converter at this

edge for restoration. Upon this change, an update of all

the power loss of downstream nodes is then required, so

that certain previously non-restorable edges can be restored

due to this move. At any point, if the terminal power

loss Ltop→1−terminal meets the target loss, we finish the

loop. Finally, the merge operation is performed to further

reduced redundant converters. The merge operation merges

the assigned converters of edges (ni → n) with a single

converter at the output of the combiner connected to the

node n. The merge operation is only effective if both
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Figure 3: (a) OE/EO converter inserted at two edges (a→
c) and (b→ 1− terminal) (b) Merge operation example.

Algorithm 1 Optical Power Restoration.

Require: Target BDD function and and target loss G.

1: Compute critical path P ← {pi : Lpi > G}
2: for Each critical paths pi sorted from top Lpi do
3: for Each critical edge ej in pi do
4: nin, nout ← input and output node of ej
5: if Ltop→nin ≤ th then � ej can be restored.

6: Apply restoration at edge ej
7: for nk ∈ {downstream of nin} do
8: Update Ltop→nk

9: if Inputs of nout is traversed then
10: Merge converter if condition is satisfied.

11: if Ltop→1−terminal < G then
12: break

conditions are satisfied: (1) the merged point meets the

noise threshold, and (2) the number of converters after the

merge becomes smaller. Note that the first condition may

not always satisfy during the merge operation; otherwise,

one can continue the operation till reaching the 1-terminal,

resulting in one single converter. Figure 3b shows the

example where two edge (n1 → n) and (n2 → n) meets the

threshold before using any converters, and their respective

converters are merged to be 1; while (n3 → n) does not

meet the second criterion so the converter cannot be merged.

The simulation results are shown in Table I. The first

three columns summarized the benchmark name and the

number of primary outputs and the number of optical

switches based on the given ordered BDD. Column 4-6

show the number of OE/EO converters under corresponding

to each relative improvement, varying from 10dB, 12dB to

16dB. The threshold is set to be a relatively conservative

25dB. We can notice the trend that in order to improve

more power, the number of OE/EO converters also needs

to increase. Bigger designs do not necessarily need more

converters as the number of critical paths is not necessar-

ily greater and how they distribute is uncertain. As was

calculated in the last row, the average converter numbers

are 3.57% , 5.27%, 11.04% of the total number of optical



TABLE I: Simulation results with different optical power

target: 10dB, 12dB and 16dB.

benchmark #PO #sw 10dB 12dB 16dB

dalu 16 1692 20 39 194
apex7 37 458 37 53 111
stpmotor 29 491 31 52 104
k2 43 2113 10 16 56
cps 102 2224 45 49 94
i5 66 672 44 78 152
x3 99 851 19 24 100
frg2 139 1981 30 47 58
pdc 40 960 43 75 66
spla 46 977 45 54 67
vda 39 1117 55 71 222
apex5 85 1410 89 118 166
simple spi 144 1473 70 100 177
x4 71 602 91 147 254
i2c 140 1836 44 71 260
example2 66 645 14 48 98

average 73.1 1257.1 44.9 66.3 138.7

ratio to #sw 3.57% 5.27% 11.04%

Figure 4: Number of converters under different improve-

ment goals and noise threshold.

switches, respectively.

When the noise threshold is the dominating factor of th,

we perform the second set of experiments. Figure 4 plots the

number of converters with respect to different th of 15dB,

25dB, and 40dB as well as different improvement goals. In

general, the trend is super-linear to the power target. Smaller

thresholds reflect more noisy environment. For example, in

the noisiest environment, the threshold is also the smallest

15dB for the signal to be detected correctly. Intuitively, the

number of converters increases when the noise threshold

becomes smaller.

III. OPTICAL NEURAL NETWORKS
In this section, we focus on the robustness and scalability

issues of recently proposed integrated ONN architectures.

We will demonstrate several software-hardware co-design

methodologies that can enable more noise-robust and scal-

able ONN implementations.

A. Phase Noise Robustness

In the classical integrated ONN architecture, Mach-

Zehnder Interferometer (MZI) arrays are constructed to real-

ize MLP inference. Due to environmental changes, thermal

crosstalk, and manufacturing imperfactions, noise exists in

each MZI such that the phases of the output light signals

will be perturbed. Thus we refer to this noise as phase noise.

In each fully-connected layer of the MLP, matrix-vector

multiplication is performed. The optical implementation of

matrix multiplication is shown in Figure 5. Specifically,

consider an n-input channel, m-output channel layer, the

weight matrix W ∈ R
m×n is first decomposed using

singular value decomposition W = UΣV ∗, where U , V ∗

are m×m and n×n unitary matrices, respectively, and Σ
is an m× n diagonal matrix. Each of the unitary matrices

U and V ∗ can be further parametrized into the product of

a series of planar rotations,

U(n) = D
2∏

i=n

i−1∏
j=1

Rij , (4)

where D is an n× n diagonal matrix that only contains 1

or -1, Rij is an n × n identity matrix except for the four

entries at (i, i), (i, j), (j, i) and (j, j), which are replaced by

cosφ, sinφ, -sinφ, and cosφ. This planar rotation Rij can

be implemented with a 2× 2 MZI, and its transfer function

is given by,(
y1
y2

)
=

(
cosφ sinφ
− sinφ cosφ

)(
x1

x2

)
. (5)

Therefore, for an arbitary m × n matrix W , we can use

total n(n − 1)/2 + m(m − 1)/2 MZIs to build two MZI

arrays for each of the decomposed unitary matrices U and

V ∗. The diagonal matrix Σ can be simply realized by

attenuators/optical amplifiers.

…

…

…

…

…

Ri,j

in out

Figure 5: MZI array for unitary matrix.

The phase of the phase shifter on each MZI is theo-

retically given by φ = γv2, where γ is the device- and

temperature-related coefficient and v is the voltage control

of the thermal-optic phase shifter on the MZI. Thus, the

actual phase lag caused by a phase shifter is perturbed by

multiple noise sources. This phase noise can be approxi-

mately modeled as a gaussian noise N (0, σ2). To evaluate

the error caused by phase noise, we first demonstrate the

�2 distance between random unitary matrices without and

with phase noise injected ||U −Un||22. Figure 6 shows that

larger phase noise and larger unitary matrix size will both

contribute to larger error (�2 distance) of the unitary matrix.

This matrix size-related error caused by phase noise could

limit the ONN scale, as it may cause significant accuracy



Figure 6: �2 difference of various-size unitary matrices

under different phase noise standard deviations. Black, blue,

red boxes represent noise standard deviation of 0.05, 0.02,

and 0.01, respectively.

Figure 7: Model accuracy on MNIST dataset with different

exposure rate and phase noise standard deviations. The

three-layer MLP setup is (10×10)-64-64-10.

degradation when implementing relatively large matrices.

To investigate the relation between model accuracy and

phase noise, we inject phase noise with different σ into a

pre-trained three-layer MLP. The model accuracy is tested

on a downsampled MNIST dataset. We expose different

portions of MZIs to noise to demonstrate the impact of

phase perturbation on ONN performance. Figure 7 illus-

trates noise robustness of a three-layer MLP to different

phase noises. When the phase noise std. is smaller than

0.01, the accuracy degradation is negligible (<1%), but

the accuracy drops drastically as larger noise is injected.

We also notice that when fewer MZIs are exposed to

phase noise, higher testing accuracy the model will achieve.

This enables a possible methodology to improve robustness

by cutting down the number of components used in the

hardware implementation.

As different layers in the MLP will extract different

levels of features, the sensitivity to phase noise will also

vary from layer to layer. We individually inject phase noise

Figure 8: Model accuracy on MNIST dataset when injecting

phase noise into different layers. The five-layer MLP setup

is (10×10)-64-64-64-64-10.

into each layer in a five-layer MLP and show its resultant

inference accuracy in Fig. 8. The first several layers are

more sensitive to phase noise compared with deeper layers,

because shallow layers are closer to inputs and responsible

to extract low-level features, which are of vital significance

to the model expressivity. In addition, the first layer often

consists of a large input feature dimension, which will be

more sensitive to noise according to the above discussion on

unitary matrix size. Therefore, selective protection to MZIs

in the shallow layers would be a good strategy to mitigate

noise robustness issues of ONNs.

This set of experiments intends to demonstrate that by

decreasing the number of optical components, the neural

network robustness can also be improved. As depicted in

the box plots of Figure 9, there are three random noise

amplitude settings imposed upon the phases of MZI: 0.020,

0.025 and 0.050. Each conforms with a truncated norm

distribution. For each noise setting, we generate 20 noisy

samples for both the previous architecture (Figure 9a) and

the slimmed architecture (Figure 9b). Taking (14×14)-150-

150-10 as an example, it can be seen that the accuracy

distribution of the slimmed architecture not only has higher

average and geometric means but also a smaller variation

range between the best and worst among all the samples.

Another approach to improving ONN robustness is to add

weight regularization term in the learning objective,

L = Lbase +
∑
||W ||22, (6)

where Lbase is the basic loss function. �2 regularization

penalizes weights with large norms and mitigates overfitting

problems, which could lead to a more smooth solution

space and thus less sensitivity to noise perturbation. This

regularization term is equivalent to performing weight decay

in the optimization step,

W t+1 = W t − η(∇Lbase + λ
∑

W t), (7)

where η is the learning rate and λ is the weight decay

rate. We train a tree-layer MLP with various weight decay

rates, and plot the testing accuracy under different phase



(a) (b)

Figure 9: Noise robustness of (a) the classic architecture

(b) the proposed architecture with the (14×14)-150-150-10

setup.

Figure 10: Model accuracy on MNIST dataset when usign

different weight decay rates λ. The three-layer MLP setup

is (10×10)-64-64-10.

noise standard deviations in Fig. 10. The experimental

results show that training with weight decay can regularize

the neural networks and achieve higher testing accuracy

than the baseline without weight decay. This regularization

approach introduces minimum training overhead and can

effectively improve the robustness of ONNs to phase noise.

B. ONN Scalability

The scalability issue of ONNs attributes to two aspects:

Area cost and model performance. We will discuss these

two aspects individually together with corresponding design

methodologies.

In the classical integrated ONN architecture, total m(m−
1)/2+n(n−1)/2+max (m,n) MZIs will be used to build

an m×n weight matrix. This hardware complexity can limit

the actually implementation scale of ONNs, especially when

the size of an MZI reaches up to ∼100 μm. For instance,

a typical on-chip MZI array will have approximately 100

MZIs at most, which therefore requires to partition the

matrix multiplication into blocks with extra scheduling

overhead and larger latencies. To improve the area efficiency

Figure 11: �2 distance between a 64×64 weight matrix with

and without phase noise injected. The matrix is partitioned

into various size of blocks. Black, blue, red boxes represent

phase noise standard deviation of 0.05, 0.02, and 0.01,

respectively.

and thus scalability of ONN, novel architectures can be

adopted to cut down its area cost. The proposed slimmed

ONN architecture can cut down 15-38% optical components

and thus improve the area cost of ONNs. This architec-

ture adopts a software-hardware co-design methodology to

substitute the original SVD with a TUΣ decomposition

method. In this way, one of the area-expensive unitary

blocks V ∗ is replaced by a sparse tree network T . The

sparse tree network T adapts the difference between input

channel m and output channel n, with merely O(n) MZIs

adopted. Consider that the theoretical hardware cost of this

slimmed architecture is n(n+1)/2 MZIs, the scalability of

ONNs is thus improved, enabling the implementation of a

more compact integrated ONN.

Another scalability issue that faces ONNs is related to the

aforementioned robustness issue. As we discussed above,

larger unitary matrices will accumulate larger errors when

phase noise is injected. Hence, directly mapping a large

neural network into MZI arrays in a flattened way leads

to dramatically decreasing signal-to-noise ratio, which will

severely harm the inference performance. Similarly, we

can adopt the slimmed architecture and network pruning

technique to cut down the component utilization and reduce

the number of noise sources to improve the scalability. Also,

environmental noises can be modeled and considered in the

training flow with weight regularization strategy to obtain

a more robust solution. This noise-aware training method

has the potential to train a fault-tolerant ONN with better

scalability.

Another possible approach to resolving this scalability

issue is to strike a balance between efficiency and perfor-

mance through tiled matrix multiplication algorithm. If the

matrix multiplication can be performed in a tiled way, each

small sub-matrix multiplication can be mapped to a small-

scale MZI array such that the area cost is well-controlled



and the noise error will be constrained in an acceptable

range as the phase error will only impact one particular

sub-matrix. We partition a 64× 64 weight matrix W with

different sizes of sub-matrices, from 4 to 64, and Fig. 11

plots the �2 distance between the original matrix W and

Wn with phase noise injected in each block. As can be

seen, by using small blocks, the total error caused by phase

noise reduces accordingly, which offers a good reason to

adopt blocking matrix multiplication for better scalability

of ONNs.
Even though this blocking matrix multiplication method

requires to perform the partial product accumulation in

electronics with extra overhead, this could still benefit the

overall performance and throughput if the optical computing

part can offer orders-of-magnitude faster matrix multiplica-

tions with reasonable fidelity.

IV. CONCLUSION

Robustness and scalability have been two major obstacles

to building large scale and practical optical computing

circuits. This paper discusses the two issues for two rep-

resentative optical computing paradigms: logic computing

and neural networks. As discussed in the previous sections,

they are highly correlated due to the cascaded power loss or

noise error, both a result of the lack of signal restoration and

isolation in optics. Logic computing and neural networks

have shared properties while still demonstrating unique

features that require specific ways to approach. In this

paper, for optical logic circuit, we discuss automated design

techniques by introducing the restoration into optics using

OE/EO converters. For optical neural networks, we have

studied the noise sensitivity under different situations. Auto-

mated learning and co-design methodologies are presented

to compensate for both issues.
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