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Abstract— Optical neuromorphic computing has demonstrated
promising performance with ultra-high computation speed, high
bandwidth, and low energy consumption. The traditional optical
neural network (ONN) architectures realize neuromorphic com-
puting via electrical weight encoding. However, previous ONN
design methodologies can only handle static linear projection with
stationary synaptic weights, thus fail to support efficient and flexi-
ble computing when both operands are dynamically-encoded light
signals. In this work, we propose a novel ONN engine O2NN based
on wavelength-division multiplexing and differential detection to
enable high-performance, robust, and versatile photonic neural
computing with both light operands. Balanced optical weights
and augmented quantization are introduced to enhance the repre-
sentability and efficiency of our architecture. Static and dynamic
variations are discussed in detail with a knowledge-distillation-
based solution given for robustness improvement. Discussions on
hardware cost and efficiency are provided for a comprehensive
comparison with prior work. Simulation and experimental results
show that the proposed ONN architecture provides flexible,
efficient, and robust support for high-performance photonic neural
computing with fully-optical operands under low-bit quantization
and practical variations.

I. INTRODUCTION

Deep neural networks (DNNs) demonstrate record-breaking
performance on various applications in recent years. However,
their escalating model scales and computation demands cast
substantial technical challenges to traditional electrical digi-
tal computing platforms. As a compelling alternative, optical
neural networks (ONNs) have attracted increasing attention
with ultra-high speed, ultra-low latency, and low energy con-
sumption, which provide a promising next-generation artifi-
cial intelligence (AI) acceleration platform. Previous research
successfully demonstrated ONNs with silicon-based integrated
photonic circuits. Shen et al. [1] proposed to use singular
value decomposition to decompose weight matrices and map
them onto cascaded Mach-Zehnder interferometer (MZI) arrays
to achieve matrix-vector multiplication. This coherent ONN
demonstrates ultra-low inference latency with an over 100 GHz
photo-detection rate. However, this architecture depends on
complicated matrix decomposition with a large area cost and
high control complexity [1], [2]. A slimmed ONN [2] was pro-
posed to improve the hardware efficiency through a software-
hardware co-design methodology. Fast-Fourier-transform-based
ONNs [3], [4] were proposed to further reduce the ONN area
cost by mapping neurocomputing onto the optical frequency-

domain, achieving a smaller footprint but lacks the flexibility
to support general matrix multiplication. Apart from these
coherent photonic NN designs, ONN architectures based on
photonic adders [5], wavelength-division multiplexing (WDM)
techniques [6], and optical microring (MR) resonators were
proposed to implement incoherent ONNs [7]–[9]. Those ONNs
focus on dot-product computation and encode trained weights
by tuning the configurable MR resonators (MRRs) to modulate
the magnitude of optical signals with different wavelengths.
Though MRR-ONNs [7], [8] have an advantage in circuit
footprint and power consumption, they are unable to support
linear dot-product between two optically-encoded matrices and
are also noise-prone due to MRR weight bank sensitivity issues.

However, the previous electrical-weight-based design
methodology potentially limits the application range of
ONNs to accelerate modern advanced DNNs. Prior ONN
designs do not have the capability to support robust and
efficient computing with both operands being dynamically-
encoded optical signals, which includes essential operations
in attention-based models [10] and advanced NNs with
dynamically-generated weights [11]. Moreover, fully-optical
operands can potentially benefit ONN on-chip training and
online learning applications with frequent and high-speed
weight updating [12], [13]. In terms of robustness, previous
MZI-based ONN architectures encounter nontrivial accuracy
degradation under low-bit signal quantization and practical
device variation [14], [15], lacking compatibility with modern
neural compression techniques.

In this paper, we propose a new ONN architecture O2NN to
enable high-performance and versatile photonic neuromorphic
computing. We present a WDM-based differential dot-product
unit with augmented and balanced optical weights as the core
engine. The main contributions and key features are as follows,

• Flexibility: we propose a novel ONN architecture based on
WDM and differential detection to enable dynamic neural
computing between two fully-optical operands.

• Expressivity: we introduce extended optical weights and
augmented quantization to improve the model expressivity.

• Robustness: we given a comprehensive analysis on the
variation-robustness of our photonic core and provide an
effective solution to improve the computational fidelity
with knowledge-distillation-based noise-aware training.



II. PRELIMINARIES

In this section, we introduce background knowledge about
ONNs and our motivations.

A. Neural Networks with General Matrix Multiplication

Modern neural networks extensively adopt fully-connected
layers and convolutional layers to achieve linear projection and
feature extraction. Those linear operators can ultimately be
implemented by general matrix multiplication (GEMM). For
example, a 2-dimensional K×K convolution can be described
as y = W ∗ x, W ∈ RCout×Cin×K×K ,x ∈ RCin×H×W ,
where Cin, Cout, k, H , W are input channel, output channel,
kernel size, input height and width. To efficiently implement
this algorithm, an im2col algorithm is widely adopted to
unroll each convolution patch as a (Cin × K × K)-length
vector. Therefore, the convolution is transformed to a GEMM
yCout×(H′W ′) = WCout×N · xN×(H′W ′), where H ′,W ′ are
spatial height and width of y, and N represents the unrolled
vector length (Cin × K × K). This im2col algorithm lays
the foundation for modern high-performance CNN accelerator
designs. Besides GEMM with static weights, advanced DNN
architectures, e.g., attention-based natural language process-
ing models [10] and dynamic CNNs with real-time-generated
weights [11], require dynamic tensor-product-based opera-
tions to achieve better representability. Such essential and
computationally-expensive modules require high-performance
accelerators to support both operands to be dynamic signals.

B. Optical Neural Network Architecture

Here we give a short ONN literature review. Shen et al. [1]
proposed to map decomposed unitary matrices to cascaded
Mach-Zehnder interferometer (MZI) arrays to achieve neu-
ral network acceleration. Later, a recurrent ONN architecture
was proposed based on MZI arrays [16]. This MZI-based
ONN has a relatively high area cost and unsatisfactory noise-
robustness [14], [15]. Zhao et al. [2] proposed a slimmed
architecture, achieving 15%-38% area reduction and better
robustness. Fast-Fourier-transform-based ONNs [3], [4] were
proposed to map neural computations in the frequency-domain,
which further reduces the ONN area cost by approximately
3×. Incoherent ONNs were proposed [7], [8] to achieve matrix
multiplication with a small footprint. Previous ONNs only focus
on inner-product with one operand being electrically-encoded
in device configurations.

III. PROPOSED O2NN ARCHITECTURE

In this section, we introduce the architecture and features
of the proposed O2NN, including expressivity, efficiency, and
robustness.

A. Dot-Product Engine with Both Optical Operands

Our proposed architecture is designed with a WDM-based
differential structure to support flexible fully-optical vector
dot-product computations. It allows both operands to be
dynamically-encoded optical signals, which is inherently dif-
ferent from previous electro-optic neural architectures that
are limited to stationary electrical weights [1]–[3], [8], [17].
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Fig. 1: Schematic of proposed WDM-based differential dot-
product architecture with optical-weight extension.

Figure 1 demonstrates the structure of the engine to achieve
dot-product between two optical vectors. In this architecture,
the optical input vectors are denoted as x ∈ RN+ and w ∈ RN+ ,
which are encoded into the light magnitude with a non-negative
range of [0, 1]. Each pair of elements xi and wi is encoded
in a unique wavelength λi. Interestingly, by putting a -π/2
degree phase shifter (PS) on the lower input port of a 2 × 2
optical directional coupler (DC), we can achieve an orthogonal
addition/subtraction pair in the complex domain,(
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where z0i , z1i represent upper and lower output port of the
directional coupler, respectively. Different zi with different
wavelengths λi will be re-directed by the resonated MR onto
their corresponding rails, i.e., z0i onto 0◦ rail and z1i onto 90◦

rail. According to the WDM technique, different optical wave-
lengths can propagate on the same waveguide without mutual
interference, which enables highly parallel signal processing. At
the end of the rail, photodiodes (PDs) are used to accumulate
the energy of the WDM optical signals, proportional to the
square of magnitude, and generate photocurrent I0 and I1,(
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To calculate the optical dot product, we adopt a differential
structure to transfer the two rails of photocurrent to an electrical
voltage signal U which carries the dot product result,

U = G(I0 − I1) = 2G

N−1∑
i=0

xiwi ∝
N−1∑
i=0

xiwi, (3)

where G is the gain of the on-chip transimpedance amplifiers
(TIA). The superiority of the proposed architecture is that both
operands are high-speed optical signals that allow dynamic
encoding. Also, all components in this computing core are
of fixed configuration, which can be fully passive with near-
zero energy consumption, no external control overhead, and no
potential thermal crosstalk, especially when both operands are
dynamically generated from other optical circuits.

B. Expressivity Boost with Optical-Weight Extension

As analyzed in the previous section, both operands are
constrained to be non-negative values as they are encoded into
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Fig. 2: (a) Distribution of weights with 3-bit augmented
quantization. (b) Augmented optical quantization flow.

the light magnitude. However, if one operand is weight, then
it will cause trainability issues since non-negative weights in-
evitably limit the model expressivity due to abnormal activation
distribution and pruned solution space. To solve this weight
range limitation problem, we apply a static weight extension
technique to augment the proposed architecture with better
model expressivity and minimum hardware cost. By simply
changing half of the passive phase shifters from −90◦ to 90◦

and encoding |w| ∈ [0, 1] into the light magnitude, shown in
Fig. 1, we can statically allow half of the weights to be negative.
The advantage is that the sign bit is offloaded to the extra
π phase shift in the passive phase shifter without changing
the input optical signal range. With static weight extension,
our engine is able to generate a balanced output distribution
with negligible hardware cost, which is the key feature that
guarantees our superior model expressivity.

C. Performance Boost with Augmented Optical Quantization

For efficient optical neuromorphic computing, low-bitwidth
inputs and weights are highly preferable. [1], [8], [15]. In
this section, we introduce how augmented optical quantization
empowers our proposed architecture with superior compatibility
with low-bit quantization shown in Fig. 2a. Given a b-bit
quantized signal within [0, 1], all possible quantized values can
be expressed as { k

2b−1}
2b−1
k=0 using a uniform quantizer,

Q(x, b) =
1

2b − 1
Round

(
x

1/(2b − 1)

)
(4)

With the extra π phase shift on the negative optical path
mentioned in Section III-B, the engine is able to equivalently
express negative weights {− k

2b−1}
2b−1
k=0 , thus the number of

implementable quantized weights wq is almost doubled for
free with a zero-centered symmetric distribution shown in
Fig. 2b. Even with binarized weights |w| ∈ {0, 1}, augmented
optical quantization will boost our architecture to a ternary
ONN w ∈ {−1, 0, 1} with a higher model expressivity and
representability but still maintain high performance from bi-
narized laser modulation and potential ADC/DAC elimination.
Moreover, our proposed engine can naturally implement scaled
quantized weights w ∈ {−E[|w|], 0,E[|w|]} [11], [18], [19],
where E[|w|] calculates the layer-wise average of absolute
weights, to achieve better trainability by setting the laser input
intensity corresponding to those scaled values at no hardware
cost. A quantization-aware training procedure [20] is adopted to
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Fig. 3: (a) Add-drop MR resonator structure with non-ideal
transmission factor. (b) Drop port transmission decay caused
by resonation wavelength shift.

train our proposed ONN. We denote the b-bit quantized weights
and input as Qw(w, b) and Qi(x, b) respectively.

D. Robustness Analysis and Solution

In this section, we analyze the variation-robustness of the
proposed O2NN and present a solution to maximize its fidelity.

1) Dynamic Variation Analysis: Considering there is
stochastic dynamic drift in the analog optical signals, we have
x̂i = (xi+ δxi)e

jδφd
i and ŵi = (wi+ δwi)e

jδφd
i , where δφdi is

the dynamic phase drift. For a given input signal speed B, the
signal-to-noise ratio (SNR) is,

SNR =
P̄ (x)

P̄ (δx)
=

E[x2]

σ2
≈ C

B , δx ∼ N (0, σ2
x), (5)

where the SNR is empirically to be inversely proportional to
the input signal rate, e.g., 40 Gb/s signal rate corresponds to an
SNR of 10 [21], thus the constant C is approximately set to 40.
We extract the relative phase drift between two operands to an
equivalent dynamic phase perturbation on the phase shifter, i.e.,
x̂i = (xi + δxi) and ŵi = (wi + δwi), and φi = ±π/2 + δφdi ,
where δφd ∼ N (0, σ2

φ) is the dynamic input phase drift.
2) Static Variation Analysis: Considering the phase shifter

produces an extra phase drift δφs ∼ N (0, σ2
φ). Though this

drift is deterministic, it is expensive to evaluate each device
drift individually for a large accelerator, hence we assume the
static phase error is also a Gaussian random variable. Hence
we have φi = ±π/2 + δφdi + δφsi ∼ N (±π/2, 2σ2

φ), then the
output of the directional coupler can be derived as,(

ẑi
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1

)
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2
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)
.

(6)

Then we further consider the non-ideal transmission factor of
the MR resonator that only transmits α ∈ [0, 1] of the light
energy to the rail due to resonance spectrum drift and insertion
loss, shown in Fig. 3a and 3b. α is estimated by a unilateral
normally distributed variable α ∼ max(0, 1 − |N (0, σ2

α)|).
Thus, the photocurrent can be given by,(

Î0
Î1

)
=

1

2

(∑N−1
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i

(
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i

)∑N−1
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(
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i

)) . (7)

Therefore, the differential output of the engine becomes,
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N−1∑
i=0

(α0
i − α1

i

4
(x̂2i + ŵ2

i )−
α0
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i

2
x̂iŵi sinφi

)
. (8)



Our engine is highly robust to static device noises since the
design point φ = ±π2 and α = 1 are the local optima of sin
and MR resonance curve with the minimum sensitivity.

3) Address Static and Dynamic Noises via Variation-Aware
Knowledge Distillation: We handle the above static and dy-
namic variations by training ONNs with the non-ideality mod-
eling, shown in Eq. (8). We apply a knowledge distillation
training strategy to improve the noise-tolerance of our ar-
chitecture. First, we pre-train an ideal ONN model without
noise injection. as the teacher model ft(·;W ). Then we inject
both static and dynamic variations to a noisy student model
fs(·;W , σx, σφ, σα). We train the student model with a com-
bined objective of hard target and soft target,

L = βT 2DKL(q, p) + (1− β)H(y,softmax(fs)),

p =
exp(fs/T )∑

exp(fs/T )
, q =

exp(ft/T )∑
exp(ft/T )

, (9)

where DKL is the KL divergence, T is a temperature to control
the smoothness, H(y,softmax(fs)) is the cross-entropy loss,
and β is a weighting factor to balance the soft and hard
targets. Though this method introduces marginal training time
overhead, it can effectively improve the ONN robustness to
both static and dynamic errors. A noise source cooling strategy
that gradually reduces the noise intensity is leveraged in low-bit
(e.g., <3 bit) quantized training for better convergence.

E. Discussion: Hardware Cost and Features

In this section, we analyze and compare the hardware cost
and features of our proposed ONN with previous ONN designs.

1) Optical Input Encoding Cost: The optical inputs are
driven by coherent sources with phase shifters to control
their phases. The weight encoding cost can be amortized by
broadcasting to multiple processing units [23]. Moreover, since
the weights are relatively stationary in ONNs, they can be
directly modulated by phase change materials [17] or efficient
laser modulation, which has near-zero area cost and power
overhead. Since our architecture supports both operands to be
optical signals, our architecture is the first integrated ONN
that can achieve multiplication beyond static synaptic weights.
Dynamic optical signals can be directly fed into our engine
to support fully-optical attention-like operations [10] and NNs
with dynamically-generated weights [11], where no extra en-
ergy is required due to its fully-passive design.

2) Area Cost, Latency, and Energy Consumption: Now we
give a theoretical analysis of the hardware cost. Figure 4
shows how we assign multiple engines to a GEMM task
with the im2col algorithm. Without losing generality, we only
consider the most area-consuming directional couplers (DCs)
and phase shifters (PSs) and assume they share the same
size and aspect ratio of wdc/hdc = 2. We partition the
GEMM task into P × Q sub-tasks to balance hardware cost
and parallelism. For a matrix multiplication AM×N · BN×L,
the proposed architecture costs PQN PSs and PQN DCs.
This partitioned engine assignment has an estimated latency
of τours = ML(2wdc+Nhdc)

PQc = ML(N+4)hdc

PQc , where c is the
speed of light. The previous MZI-based ONN architecture costs
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Fig. 4: Tiling-based engine assignment for parallel GEMM.

M(M − 1) + N(N − 1) + 2max (M,N) DCs and the same
number of PSs to implement an M×N matrix-vector multipli-
cation with latency τmzi =

4(M+N)Lwdc

c = 8(M+N)Lhdc

c [1].
We compare their latency-area product (LAP),

Amzi · τmzi =8(M +N)(M2 +N2)Lhdc/c

Aours · τours =MNL(N + 4)hdc/c.
(10)

For fully-connected layers, we assume M = N , then we
have 32N

N+4 times smaller LAP than MZI-ONN. For a typical
convolutional layer, we assume N = K2M . Then the LAP
improvement is around 8(K2 + 1) times. If the MZI-based
ONN adopts P × Q MZI sub-arrays, it costs around 8LNhdc

Qc

latency and PQN2 components, which is still 8P times less
efficient than our architecture.

Our architecture is also more energy-efficient than prior
ONNs. For the photonics part, the only optical device tuning
power is the phase control and modulation. As mentioned
before, the power of the weight modulation can be amortized by
weight sharing and even reduced by direct laser modulation. In
attention-like operations and layers with dynamically-generated
weights, since both operands are directly from the previous
layer and already in the optical domain, our architecture poten-
tially consumes near-zero energy. Hence we have comparable
or better energy efficiency than previous coherent ONNs in
different application scenarios. For the electrical part, since our
engine supports binarized inputs, our architecture is compatible
with a DAC/ADC-less design, enabling potentially-ultra-low
power as ADCs/DACs take most power [8], [15].

3) Differences from Prior Work: We compare with previous
ONNs in Table I. Though larger than MRR-ONN, compared
with other coherent ONNs [1]–[3], our architecture has a
smaller area cost. No previous ONN can directly perform linear
inner-product between two optical signals. Our proposed archi-
tecture is the first integrated ONN that supports both operands
to be optical signals, making it possible to realize direct
layer cascading and optical-optical product that is necessary in
attention-based neural architectures and NNs with dynamically-
generated weights [11]. Compared with noise-sensitive MRR-
ONN and unscalable, error-prone MZI-ONN [1], [14], [15]
, our architecture achieves a relatively-low hardware cost,
good model expressivity, and much better variation-tolerance.
Furthermore, our architecture can well-support a wide spec-
trum of modern DNN architectures across CNN, MLP, and
AdderNet, etc. MZI-ONN has low compatibility with network
compression given its complicated principle [3], [15], and



TABLE I: Comparison among ONNs. Area cost is normalized to O2NN on a size-N matrix-vector multiplication based on real device sizes [1],
[7], [8], [22], i.e., one MZI ≈240×40 µm2, one DC≈60×40 µm2, one PS≈60×40 µm2, and one MRR≈20×20 µm2. Note that our area is
not a simple accumulation of device sizes but is estimated with real layout information as a reference. Power is normalized to ours with the
same statistics from the PDK [22], i.e., one PS≈20 mW and one MRR≈4 mW . The block size is set to k=4 for FFT-ONN [3].

MZI-ONN [1] Slim-ONN [2] FFT-ONN [3] MRR-ONN [7] O2NN
Norm. Area Cost ∼1.71× ∼0.86× ∼0.86× ∼0.1× 1×
Norm. Power ∼2× ∼1× ∼1.25× ∼0.2× 1×
General Matrix Multiplication Yes No No Yes Yes
Optical Operand Support Only One Only One Only One Only One Both
Robustness Medium Medium Medium Low High
Control Complexity Medium-High Medium Medium-Low High Medium
CNN Support Yes No No Yes Yes
Quantization Compatibility Low Low Medium Medium-High High
Output Range Positive Positive Positive Positive&Negative Positive&Negative
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Fig. 5: Evaluation of 8-bit optical-weight extension on MNIST.
Ext. is short for extension.

MRR-ONN only scales its weight range without increasing the
valid quantization levels. In contrast, our ONN can seamlessly
support extremely-low-bit quantization with better expressivity.

IV. EXPERIMENTAL RESULTS

We conduct experiments on the MNIST and FashionMNIST
(FMNIST) dataset. We use a CNN setting C16-C16-P5-F32-
F10, where C16 is a 3×3 convolutional (Conv) layer with
16 kernels, P5 means average pooling with output size 5×5,
and F32 is a fully-connected (FC) layer with 32 neurons. We
implement ONNs with PyTorch and train all models for 50
epochs with the Adam optimizer. and a mini-batch size of 32.
We use Lumerical INTERCONNECT to do optical simulation
with real devices from the AIM PDK [22], which should
already model comprehensive and practical non-ideal factors.
In knowledge distillation, we set T=6 and β=0.9. We gradually
cool down the noise intensity by 20% in lower than 3-bit cases.

A. Comparison Experiments

We first validate the effectiveness of optical-weight extension
and augmented optical quantization, then evaluate the robust-
ness via optical simulation and comparison experiments.

1) Optical-Weight Extension: We compare four configura-
tions of an 8-bit quantized optical CNN: 1) no optical-weight
extension, 2) only extend FC layers, 3) apply weight extension
to both FC and Conv layers, and 4) ideal software CNN.
Figure. 5 shows that weight extension for fully-connected layers
is essential for model expressivity. With balanced convolutions
and fully-connected layers, the ONN model can recover its full
modeling capacity with the highest inference accuracy. There-
fore, the proposed ONN architecture can be used to accelerate
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modern CNN models with negligible accuracy degradation
(∼0.5%) compared with the original software CNNs.

2) Augmented Optical Quantization: In analog DNN ac-
celerators, the maximum precision is 8-bit or even 4-bit
considering control complexity [1], [8], [15] In Fig. 6, our
augmented optical quantization enlarges the solution space and
achieves high accuracy even under low-bit quantization on both
dataset. Even for binarized optical inputs, we can still maintain
>96% accuracy on MNIST and 76% on FashionMNIST, which
enables the coexistence of hardware-efficient optical computing
and improved inference accuracy. In contrast, the state-of-the-
art quantized MZI-ONN still suffers from > 10% accuracy drop
on MNIST under extremely-low-bit quantization [15].

3) Variation-Robustness Evaluation: We use Lumerical IN-
TERCONNECT tools with the AMF process design kit
(PDK) [24] to validate the fidelity of our architecture under
static device variations. The simulation results in Fig. 7 show
that phase shifter drift and MRR non-ideality lead to 10-
15% dot-product error. Then, we further consider dynamic
variations in our accuracy evaluation with our PyTorch-based
ONN simulator on different setups, 1) noise-unaware training



(a) (b)

Fig. 8: Robustness evaluation on MNIST. Error bars show the
±1σ variance. (a) σφ=0.04, σα=0.04, SNR=39.81 (16 dB) (b)
σφ=0.05, σα=0.05, SNR=31.62 (15 dB).
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Fig. 9: Robustness of MRR-ONN [7] on MNIST. (a) σα=0.04,
SNR=39.81 (16 dB). (b) σα=0.05, SNR=31.62 (15 dB).

(Baseline), 2) noise-unaware training w/o dynamic varia-
tions (Baseline w/o Dyn. Err.), and 3) variation-aware
knowledge distillation (KD). Figure 8 shows that our O2NN
is extremely robust to large static device error [14], [15],
consistent with the analysis in Section III-D2, but sensitive to
dynamic variations. Our knowledge-distillation-based training
method can help recover the majority of the accuracy with
∼3% degradation under both static and dynamic noises. We
also observe higher robustness to dynamic noise with lower
bitwidth, which is beneficial for binary or ternary ONNs and
thus further shows our superior compatibility with low-bit
quantization. As a comparison, we show the robustness of
MRR-ONN in Fig. 9. We observe that it has high sensitivity
to both static and dynamic errors and suffers from a larger
accuracy degradation than our O2NN under low-bit quantization.
MZI-ONN typically suffers from even larger accuracy loss due
to severe phase error accumulation effects [1], [15], thus we do
not show its accuracy here for brevity.

V. CONCLUSION

In this work, we propose a new optical neural network
architecture O2NN to enable efficient and noise-robust pho-
tonic neuromorphic computing, which is the first one that
supports tensor product with both operands to be dynamically-
encoded light signals. A novel WDM-based differential dot-
product engine is presented with extended optical weights and
augmented quantization techniques, demonstrating enhanced
model expressivity and performance under low-bit quantization.
We give an analysis of static and dynamic variations and
present a knowledge-distillation-based training method to en-
able variation-tolerant optical neurocomputing under practical
noises. A thorough comparison with prior work is provided to

show our advantages in hardware cost, efficiency, and features.
Experimental results demonstrate that our O2NN can support
flexible, robust, and efficient optical neural computing with
both operands being optical signals even when low-bit optical
quantization and practical variations exist.
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