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Abstract— Optical neural networks (ONNs) demonstrate orders-
of-magnitude higher speed in deep learning acceleration than their
electronic counterparts. However, limited control precision and
device variations induce accuracy degradation in practical ONN
implementations. To tackle this issue, we propose a quantization
scheme that adapts a full-precision ONN to low-resolution voltage
controls. Moreover, we propose a protective regularization tech-
nique that dynamically penalizes quantized weights based on their
estimated noise-robustness, leading to an improvement in noise
robustness. Experimental results show that the proposed scheme
effectively adapts ONNs to limited-precision controls and device
variations. The resultant four-layer ONN demonstrates higher
inference accuracy with lower variances than baseline methods
under various control precisions and device noises.

I. INTRODUCTION

As Moore’s Law slows down, the optical neural network
(ONN) offers a promising alternative to its electronic coun-
terpart due to ultra-low latency and high energy efficiency [1]–
[3]. An integrated fully-optical neural network [1] consisting of
Mach-Zehnder Interferometer (MZI) arrays has been demon-
strated to perform matrix multiplication based on matrix singu-
lar value decomposition (SVD) and unitary parametrization [4],
[5], with over 100 GHz photo-detection rate and near-zero
energy dissipation [6].

However, similar to other neuromorphic systems [7], [8],
ONNs inevitably bear a challenge in robustness to non-ideal
effects in the actual implementation. First, phase shifts pro-
duced by MZIs are not physically implementable with arbitrary
precision since the electronic control of optical devices only
has limited resolution. Therefore, weight encoding errors ex-
ist when mapping full-precision models onto physical optical
devices. Also, low-precision voltage controls are preferred in
neuromorphic platforms [9], [10] for energy, performance, and
control complexity considerations. Thus we are motivated to
put forward an effective methodology to design ONNs adaptive
to low-bit controls. Another critical issue is the device-level
noise on MZIs. Each MZI contains a configurable thermo-optic
phase shifter to encode the ONN weight. This phase shift can
be influenced by the device size, manufacturing imperfection,
voltage control, and environmental changes, etc [1], [11], in-
ducing weight encoding errors. Given the cascaded architecture
of ONNs, phase errors caused by limited control resolution
and phase shifter variations will propagate and accumulate

throughout the entire system, eventually degrade the inference
accuracy [1].

Recently, most ONN research focuses on new devices and
novel architectures, targeting at the area and power improve-
ment [2], [12], while limited works investigate robustness issues
of ONNs. A proposed FFT-style architecture is demonstrated
to have better robustness to device imperfections than the
original ONN [13]. Another work [2] proposed a slimmed ONN
architecture which cuts down the number of MZIs using a new
decomposition method to eliminate part of noise sources. The
above two previous works demonstrate novel ONN architectures
with better robustness, but require special hardware implemen-
tations and ideally assume full precision controls. We are the
first to propose the design methodology that addresses low
control precision and device variations of ONNs.

Therefore, we propose a noise-aware quantization scheme
ROQ to help design a robust ONN model that is amenable to
low-precision controls and device variations. The main contri-
butions of this work are as follows,
• We experimentally show that naive post-training quantiza-

tion and traditional iterative quantization methods perform
poorly on ONN voltage-domain discretization and can
barely improve its noise robustness.

• We propose an end-to-end quantization scheme to enable
low-precision voltage control of ONNs and mitigate the
corresponding accuracy degradation.

• A protective Group Lasso regularization technique is pro-
posed to boost noise-robustness of quantized ONNs.

II. PRELIMINARIES

In this section, we introduce the background knowledge for
our proposed ONN training methodology.

A. ONN Architecture
The classical integrated ONN architecture [1] implements

Mach-Zehnder Interferometer (MZI) arrays to realize MLP
inference, shown in Fig. 1. This ONN architecture first decom-
poses the weight matrix W ∈ Rm×n through singular value
decomposition (SVD) W = UΣV ∗ and then performs unitary
parametrization to U and V ∗ as follows [4],

U(n) = D

2∏
i=n

i−1∏
j=1

Rij , (1)



Fig. 1: Schematic of a triangular MZI array and the structure
of a 2× 2 MZI.

where D is an n-dimensional diagonal matrix that only contains
±1, and the planar rotator Rij is an n×n identity matrix, where
four entries at (i, i), (i, j), (j, i) and (j, j) indices are replaced by
cosφ, sinφ, − sinφ, and cosφ. Each Rij can be implemented
with a 2× 2 MZI, whose transfer function is:(

y1
y2

)
=

(
cosφ sinφ
− sinφ cosφ

)(
x1
x2

)
, (2)

where the phase φ can be implemented with a optical phase
shifter. The diagonal matrix Σ can be realized by optical
attenuators or amplification materials to perform signal scaling.

B. Neural Network Quantization

Extensive works have shown that more efficient DNNs can
be achieved by low-bit parameter quantization. However, post-
training quantization error can lead to performance degradation.
In order to compensate the accuracy loss, a straightforward
iterative method that performs quantization and re-training al-
ternately can be used to reduce the quantization error. However,
it may encounter divergence issues when weights are quantized
with very low precision. Another successful approach is to per-
form quantization-aware training with back-propagation [14].
To achieve that, it requires to define a mechanism for gradient
propagation through the non-differentiable quantization opera-
tion. Typically, a straight-through estimator (STE) [15] is used
to model the gradient of discretization, such that the output
gradient can directly back-propagate to its input as,

∂L
∂W

=
∂L
∂Wq

� 1W∈[minV,maxV ], (3)

where � is element-wise multiplication to cancel the gradient
where W exceeds the pre-defined valid range.

III. NOISE-AWARE QUANTIZATION SCHEME

We first analyze two major non-ideal effects of ONNs, i.e.,
limited resolution in voltage control and gamma noise in phase
shifters in Section III-A. Then we demonstrate our proposed
noise-aware quantization scheme in details. Figure 2 shows the
framework of the proposed ROQ scheme.

A. Limited Control Resolution and Phase Shifter Gamma Noise

In the ONN architecture discussed in Section II-A, the
phase shifter is controlled by an electronic signal. The relation
between voltage control v and the configured phase shift φ is
typically modeled as φ = γv2 [1], [16], where γ is a device-
level coefficient that can be calculated by γ = π/v2

π , and vπ
is defined as the voltage required to achieve π radians phase
shift. Limited by the precision of voltage supply, e.g., b-bit
with dynamic range [0, vmax], only b v2πvmax

2bc non-uniformly

discretized phase values are achievable. We show the 6-bit
quantized distribution of an arbitrary 64× 64 unitary matrix in
Fig. 3. The interval between two phase levels is quadratically
enlarged as the voltage increases, leading to a larger phase
encoding error.

However, as the γ coefficient is affected by manufacturing
variations and the environmental changes, the actual phase shifts
will be perturbed by the gamma noise Given the quadratic
relation between φ and v, larger phase shifts are more sensitive
to gamma noise. In this paper, we model this gamma noise
as a random variable sampled from a Gaussian distribution
∆γ ∼ N (0, σ2).

B. Voltage-Domain Quantization

This section will focus on the detailed quantization method
applied in the voltage domain, which is the major difference
between this paper and previous weight quantization works.
In this paper, we adopt blocking matrix multiplications to
implement fully-connected layers for tractable weight encoding
error and practical considerations [1], [17], [18]. The weight
matrix W ∈ Rm×n is partitioned into p×q sub-matrices, where
each k × k block is realized by an MZI array.

A naive method is to directly train quantized phases with
back-propagation algorithm, However, gradient propagation
through Eq.(1) is extreme inefficient. Besides, analytically
computing the gradient of unitary matrices w.r.t each phase
also casts daunting difficulties on computations [1]. To resolve
the challenge, we propose a projected quantization method
with coarse gradient approximation to perform voltage-domain
discretization. The entire procedure starts from training a full-
precision ONN. Then, ROQ scheme is performed to fine-tune
the decomposed matrices UΣV ∗. We first partition the weight
matrix into a batch of square blocks W ∈ Rp×q×k×k, each
k × k block denoted as Wij , then we use the decompositions
UijΣijV

∗
ij of each Wij as initialization. Each optimization

step consists of two stages as shown in Fig. 2. The first stage
efficiently propagates coarse gradient through parametrization
and quantization. A subsequent unitary projection stage maps
the updated matrices back to unitary sub-spaces to meet the
orthogonality constraint on U and V ∗. For brevity, we only
focus on one unitary block Uij , simplified as U .

1) Coarse Gradient Approximation: In this stage, we model
the voltage-domain quantization as a straight-through estimator
(STE) [15] to approximate its undefined derivative. Specifically,
in the forward propagation, U t is parametrized into Φt and vt

based on Eq. (1) and φ = γv2. Then, we perform quantization
to get discretized voltages vtq with the resolution vmax/(2

b −
1). Any quantized voltage that exceeds the valid range [0, v2π)
is processed with a clipping function with phase wrapping to
guarantee the validity constraint,

vq,c = WrapClip(vq) =

{
vq, if 0 ≤ vq < v2π

0, if vq ≥ v2π.
(4)

Invalid large voltages are clipped to 0 instead of their closest
valid quantization level because smaller phases have less quanti-
zation errors and more quantization levels are distributed around
small phase values such that better model expressivity can be
maintained. Clipped voltages vtq,c are used to reconstruct Φt

q



Fig. 2: Framework of ROQ flow at one optimization step. FP & BP represents forward and backward propagation; Param.,
Recon., and STE are short for parametrization, reconstruction, and straight-through estimator respectively.
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Fig. 3: Histograms of (a) 6-bit quantized unitary matrix, (b) 6-
bit quantized phases, (c) 6-bit quantized voltages. The dynamic
range of the voltage supply is assumed to be [0, 10.8V], thus
the resolution is 171.4 mV.

and U t
q using Eq. (1). All subsequent forward computations

are based on quantized unitary matrices. In the backward
propagation, we coarsen the whole b-bit quantization process
U t
q = Qb(U t) as an entirety and efficiently estimate its coarse

gradient with an STE. The gradient propagation of Q follows
gtq = ∂Lt

∂Ut = ∂Lt

∂Utq
. In this way, the gradient can efficiently prop-

agate through Q without computing the complicated gradient
inside of it, and we denote the updated unitary matrix as Û t+1.

2) Unitary Projection: The orthogonality of matrix U t is a
prerequisite of unitary parametrization, but the above gradient
descent method inevitably drives Û t+1 to an infeasible point.
This hard constraint of orthogonality can be satisfied through
unitary projection U = UProj(Û) defined as,

PSQ∗ = SVD(Û); U = PQ∗. (5)

We project Û t+1 back into unitary planes to get U t+1 with
minimum approximation error [2] at each iteration.

Our proposed method has the sequential time complexity of
O(pqk3) = O(kn2), which is computationally efficient to train
quantized ONNs. This quadratic complexity attributes to the
coarse gradient approximation algorithm which does not require
the gradient propagation through parametrization. This enables
an efficient implementation of Eq. (1) without expensive matrix
multiplication. Each time an Rij left-multiplies a matrix, it is
equivalent to update two rows of the matrix,

Rij ·W ⇐⇒
{
W (i, :) = cosφij W (i, :) + sinφij W (j, :)

W (j, :) = cosφij W (j, :)− sinφij W (i, :).
(6)

Note that our method can perform parametrization to a batch
of unitary blocks in parallel with even lower runtime cost.

C. Noise-Aware Training with Protective Group Lasso Regu-
larization

To further augment the robustness of ONNs, we propose a
protective regularization strategy based on dynamic evaluation
on the noise robustness. For less robust weight matrix blocks,
i.e., with a larger error ||W − Wn||22, we will diminish its
significance by exerting larger penalty on its `2 norm.

Based on this robustness estimation, we propose a protective
Group Lasso regularization loss function to guide the ONN
model to more robust local optima as follows,

LPGL =

L,pl,ql∑
l,i,j=1

||W l
ij,q −W l

ij,q,n||22
maxi,j ||W l

ij,q −W l
ij,q,n||22︸ ︷︷ ︸

P lij

√
1/βlij ||W

l
ij ||22,

(7)
where L is the number of layers in the ONN model; pl, ql

are number of blocks along output and input channels in the
l-th layer; the last term is group-wise `2 norm; and βlij is the
number of elements in W l

ij to balance different group sizes. P lij
is the protective coefficient used to estimates the robustness
of a quantized block W l

ij,q , which is obtained by gamma
noise injection during forward propagation. This coefficient
normalizes the error in each ONN layer to [0, 1], such that
less robust block will suffer larger Group Lasso penalty and
thus the resultant weight matrix is protected from gamma
noise perturbation. To obtain a more stable estimation of noise
robustness we apply exponential moving average (EMA) to
make this coefficient learnable,

P̂
l(t)
ij = ηP̂

l(t−1)
ij + (1− η)P l(t)ij , (8)

where the adaptivity rate η is set to 0.999. This EMA-based
method efficiently estimates a more stable and accurate protec-
tive coefficient E∆γ∼N (0,σ2)[P

l
ij ] as it converges.

However, evaluating the protective coefficients with a con-
stant intensity of noise comes at the cost of a loss in accuracy
when the noise is large. Thus we adopt a noise source cooling
strategy to periodically decay the noise standard deviation σ to
help convergence.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our proposed noise-aware
quantization scheme, we compare the inference accuracy and
noise robustness with post-training quantization and iterative
quantization methods on the MNIST dataset [19]. Without loss
of generality, we use a study case of a four-layer ONN with
configuration of (12×12)-64(8)-64(8)-40(10)-10, where 64(8)
denotes 64 output channels with size-8 blocks. For voltage
quantization, we set up the same parameters used in the original
ONN architecture [1], where vmax = 10.8V and vπ = 4.36V .

A. Comparison under Limited Voltage Resolution

Starting from a full-precision ONN with 97.6% accuracy, we
compare the effectiveness of 1) naive post-training quantization
(Naive), 2) iterative quantization (Baseline), and 3) our
proposed method (ROQ). The Naive method directly quantizes
the voltage controls of the full-precision ONN. The Baseline
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Fig. 4: (a) Comparison among different quantization methods. (b), (c), (d), (e) Robustness comparison with 3-, 4-, 5-, 6-bit voltage
controls respectively. Error bars on the line represent the ±1 · σ accuracy variance for 100 noise samples.

method performs alternating steps of voltage-domain quantiza-
tion and re-training to recover accuracy loss until convergence.

Figure 4a illustrates that our proposed method outperforms
other two methods under 3- to 6-bit voltage control resolu-
tions with much less accuracy degradation. While Naive and
Baseline methods suffer from severe accuracy loss, our
proposed ROQ method achieves > 80% inference accuracy with
3-bit voltage controls and ∼ 97% accuracy on higher bits.

B. Comparison under Phase Shifter Gamma Noise

Under low-precision voltage control, we further inject gamma
noise in the MZI arrays during inference with various in-
tensities and evaluate the noise robustness of 1) post-training
quantization method (Naive), 2) iterative quantization method
(Baseline), 3) the proposed method (ROQ), and 4) ROQ with
protective Group Lasso regularization (ROQ+PGL). On four
different bit widths, from 3 to 6 bit, we evaluate their inference
accuracy with five different noise variances, from σ=0.001 to
0.005. All statistics are averaged by randomly sampling 100
noise samples. Figure 4b- 4e show the mean inference accuracy
and ±1 · σ uncertainty of all comparison methods.

Our proposed ROQ outperforms the Naive and Baseline
methods on various noise intensities. When the noise standard
deviation reaches 0.005, it still achieves ∼ 80% test accuracy.
Besides, ROQ leads to a smaller accuracy variance (narrower
error bar) than the Baseline method over 100 noise samples.
Assisted by the PGL technique, ROQ demonstrates even better
gamma noise tolerance. The proposed ROQ scheme and PGL
technique enable an end-to-end flow to fine-tune a full-precision
ONN model and make it adaptive to low-precision controls
and phase shifter gamma noise. The resultant ONN raises the
accuracy from ∼ 20% (Baseline) to ∼ 80% with lower
variances on a downsampled MNIST dataset under 3-bit voltage
control resolution together with a relatively large gamma noise
σ = 0.005 in phase shifters.

V. CONCLUSION

In this work, we propose a training methodology to adapt
ONNs to low-precision controls and non-ideal environment with
phase shifter noises. Our proposed ROQ performs an end-to-end
ONN fine-tuning with discretized voltage controls via coarse
gradient approximation and unitary projection. A protective
Group Lasso (PGL) regularization technique is also proposed
to protect ONNs from phase shifter noises by dynamically
suppressing less robust weight matrix blocks. Experimental
results show that, compared with the baseline method, the
proposed PGL-assisted ROQ can effectively tackle the non-ideal

issues of ONNs and provide a low-overhead approach towards
noise-robust ONN accelerators with lower control complexity.
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