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ABSTRACT
Photonic tensor cores (PTCs) are essential building blocks for optical
artificial intelligence (AI) accelerators based on programmable pho-
tonic integrated circuits. PTCs can achieve ultra-fast and efficient
tensor operations for neural network (NN) acceleration. Current
PTC designs are either manually constructed or based on matrix
decomposition theory, which lacks the adaptability to meet var-
ious hardware constraints and device specifications. To our best
knowledge, automatic PTC design methodology is still unexplored.
It will be promising to move beyond the manual design paradigm
and "nurture" photonic neurocomputing with AI and design au-
tomation. Therefore, in this work, for the first time, we propose a
fully differentiable framework, dubbed ADEPT, that can efficiently
search PTC designs adaptive to various circuit footprint constraints
and foundry PDKs. Extensive experiments show superior flexibility
and effectiveness of the proposed ADEPT framework to explore a
large PTC design space. On various NN models and benchmarks,
our searched PTC topology outperforms prior manually-designed
structures with competitive matrix representability, 2×-30× higher
footprint compactness, and better noise robustness, demonstrating
a new paradigm in photonic neural chip design. The code of ADEPT
is available at link using the TorchONN library.

1 INTRODUCTION
With the advance in integrated photonics, the optical neural network
(ONN) has become a promising candidate for ultra-efficient deep
neural network (DNN) acceleration [2, 11, 13, 14]. As light propa-
gates through the photonic integrated circuits (PICs), computation-
intensivematrixmultiplication can be achievedwith sub-nanosecond
latency and near-zero energy consumption [11]. Shen et al. [14]
demonstrated a triangular photonic mesh with cascaded Mach-
Zehnder interferometers (MZIs) to realize matrix multiplication
using optics. They use singular value decomposition (SVD) to de-
compose the weight matrix𝑊 into 𝑈 Σ𝑉 , parametrize the unitary
matrices 𝑈 and 𝑉 with a series of planar rotators, and map them
into a triangular photonic mesh. This matrix-decomposition-based
photonic tensor core (PTC) design is universal but suffers from high
area cost and unsatisfying noise robustness. To improve the area
efficiency, a Fourier-transform (FFT) based PTC [5–7] was proposed
that shrinks the circuit depth from linear to logarithmic using a
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butterfly circuit topology. This design removes large MZIs and con-
structs the PTC with smaller basic optical components instead.

However, previous PTCs are all hand-designed based on matrix
decomposition theory, which leaves a large design space unexplored
and lacks the adaptability to meet various device specifications and
hardware constraints. Specifically, the MZI-based PTC [14] is uni-
versal at the cost of high area cost and low compute density. The
FFT-based PTC [5–7] significantly reduces the usage of couplers
and phase shifters. However, its area efficiency may not scale well
with different PTC sizes and foundry process design kits (PDKs).
As the PTC size scales up, the butterfly mesh in the FFT-based PTC
introduces quadratically many waveguide crossings. If the foundry
does not provide compact crossings, e.g., AIM photonics [15], those
routing-related crossings will take up most of the circuit area. Be-
sides, the butterfly mesh only has a logarithmic depth. Thus it re-
stricts the matrix representability, which may lead to inadequate
ONN learnability as PTC scales up.

Based on the above analysis, we observe strong demand for an
automatic, efficient, and flexible PTC design methodology. Inspired
by the success of neural architecture search (NAS) [10, 16] in the ma-
chine learning community, an interesting question to be answered
is whether we can jump out of the conventional manual design para-
digm and use AI to "nurture" photonic neurocomputing with higher
flexibility. However, PTC design search encounters the following
unique and difficult challenges. First, unlike NAS, where the NN
architecture can be re-designed in software for application/platform
adaptation at a relatively low cost, the photonic circuits need to be
carefully designed before chip manufacturing and cannot be easily
changed given the high cost of chip tape-out. Second, the PTC design
can only be searched on a proxy NN model and learning task, but it
has to be expressive and general enough to be adapted to various AI
workloads after chip manufacturing. Third, the PTC circuit topology
has an extremely large and highly discrete search space, which casts
significant optimization difficulties that prevents direct application
of off-the-shelf NAS algorithms to this unique problem.

To handle those challenges, in this work, we propose the first
automatic differentiable search framework for photonic tensor core
topology design, which we refer to as ADEPT. Our target is, given
certain footprint constraints, we can efficiently search for a pho-
tonic circuit topology with good matrix representability, compact
footprint, and high noise robustness. ADEPT enables differentiable
PTC topology exploration via the following approaches: (1) we con-
struct a probabilistic photonic SuperMesh to enable differentiable
optimization in a huge and highly discrete PTC search space; (2) we
adopt reparametrization and augmented Lagrangian method to learn
waveguide connections; (3) binarization-aware training is employed
to learn the location to place optical couplers; (4) ADEPT integrates
the device specification from foundry PDKs into the SuperMesh
training flow and optimizes PTC designs under various footprint
constraints in a fully differentiable approach.

https://github.com/JeremieMelo/ADEPT
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Our main contributions are as follows,
• In this work, for the first time, we automate the photonic tensor
core design process and propose a differentiable framework to
efficiently explore the PTC design space.
• To enable PTC topology search in a differentiable way, we intro-

duce probabilistic photonic SuperMesh to search the PTC depth,
augmented Lagrangian method to learn waveguide connections,
and binarization-aware training to learn the coupler placement.
• The proposed ADEPT flow can adaptively generate various PTC
designs based on different foundry PDKs and circuit footprint
constraints. Experiments on various NN models and datasets
show that the searched PTC topology outperforms prior hand-
crafted structures with higher flexibility, competitive expressive-
ness, 2×-30× smaller footprint, and superior noise robustness.

2 BACKGROUND
2.1 Photonic Computing Basics
To perform neurocomputing in optics, we construct photonic inte-
grated circuits (PICs) by cascaded optical devices.
Phase shifter (PS). Phase shifters can manipulate the effective re-
fractive index of waveguides to produce a controlled phase shift𝜙 on
the propagating light signal 𝑥 ,𝑦 = 𝑒−𝑗𝜙𝑥 . Phase shifters are typically
active devices that are reprogrammable after PIC manufacturing.
Directional coupler (DC). 2-by-2 directional couplers (DC) can pro-
duce interference between two coherent light signals, whose transfer
matrix is 𝑇2×2, where 𝑇11 = 𝑇22 = 𝑡 and 𝑇12 = 𝑇21 =

√
1 − 𝑡2 𝑗 , and

𝑡 ∈ [0, 1] is the transmission coefficient. Couplers are typically
passive devices that are fixed after chip fabrication.
Waveguide Crossing (CR). Given the 2-dimensional topology of
the PIC, signal routing requires waveguide crossings. Unlike elec-
trical wires, silicon waveguides allow independent light propaga-
tion through crossed waveguides. Crossings of 𝑛 waveguides can
be described as an 𝑛 × 𝑛 permutation matrix. In photonic tensor
cores, crossings can enhance signal flow and are typically not pro-
grammable after PIC fabrication.
Mach-Zehnder interferometer (MZI). MZI is a hand-designed
structure consisting of two cascaded couplers and two phase shifters.
MZI can perform arbitrary 2-D unitary projection, which is widely
used to construct PTCs at the cost of a large circuit footprint.

2.2 Programmable PTCs
PTCs are essential building blocks in photonic accelerators con-
structed with passive and active optical devices. Current PTC topolo-
gies are hand-designed and barely involve any automation. Vari-
ous [3, 14] MZI meshes were proposed to realize arbitrary 𝑁 × 𝑁
unitary matrices using 𝑁 (𝑁 − 1)/2 cascaded MZIs. Based on this,
a weight matrix can be decomposed using SVD and mapped onto
MZI meshes. Besides this universal photonic mesh design, a Fourier
transform (FFT)-based PTC design [6, 7] was introduced to realize re-
stricted linear operations with a butterfly-style mesh topology. This
design utilizes basic optical components, i.e., PS, DC, and waveguide
crossings CR without large MZIs to reduce footprint.

PTC designs need to consider device specification in foundry
PDKs to honor circuit footprint constraints. Different foundries, e.g.,
AMF [1] and AIM photonics [15], provide devices of considerably
different sizes, which makes it challenging to manually search for
good PTC designs that fit the area budget. This motivates us to
provide an automatic solution for PDK-adaptive PTC design.
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Figure 1: Overview of the probabilistic photonic SuperMesh.

2.3 Differentiable Neural Architecture Search
Differentiable neural architecture search (DNAS) is widely adopted
to automate the manual process of DNN architecture design with
high efficiency. DNAS relaxes the discrete search space into continu-
ous representation, such that the architecture can be optimized with
gradient-based methods. DARTS [10] enables DNAS by using a soft-
max function to relax the categorical choice of candidate operations.
FBNet [16] represents the search space by a stochastic SuperNet and
then applies DNAS to discover low-latency DNN designs.

Recently, O-HAS [9] proposed an optical accelerator search frame-
work that can automatically generate the optimal accelerator ar-
chitecture. Different from our PTC circuit topology design, O-HAS
focuses on searching for a mapping strategy to implement DNN
models with manually-designed PTCs.

To the best of our knowledge, automated PTC design flow re-
mains unexplored. It will be promising to develop a flexible and
efficient framework to automatically search PTC topologies with
high expressiveness, compact footprint, and good noise robustness,
adaptive to various PDKs and footprint constraints.

3 AUTOMATIC PHOTONIC TENSOR CORE
DESIGN FRAMEWORK ADEPT

3.1 Problem Formulation
Our target is to use basic optical components, including DC, PS, and
CR, to design a photonic mesh with a controlled footprint that can
construct ONNs with high expressiveness, formulated as follows,

min
𝛼 ∈A

L
(
𝑊 ∗𝛼 ; D𝑣𝑎𝑙

)
, 𝛼 = (𝐵𝑈 , 𝐵𝑉 ,P,T)

s.t.𝑊 ∗ = argmin
𝑊

L(𝑊 𝛼 ; D𝑡𝑟𝑛), 𝐹𝑚𝑖𝑛 ≤ F (𝛼) ≤ 𝐹𝑚𝑎𝑥 ,

𝑊 𝛼 ∈ C𝑀×𝑁 =
{
𝑊 𝛼
𝑝𝑞

}𝑝=𝑃,𝑞=𝑄
𝑝=1,𝑞=1 =

{
𝑈 𝛼𝑝𝑞Σ𝑝𝑞𝑉

𝛼
𝑝𝑞

}𝑝=𝑃,𝑞=𝑄
𝑝=1,𝑞=1 ,

𝐵𝑈 , 𝐵𝑉 ∈ [𝐵𝑚𝑖𝑛/2, 𝐵𝑚𝑎𝑥/2],𝑊𝑝𝑞 ∈ C𝐾×𝐾 ,
P= (· · · ,P𝑏 , · · · ,P𝐵𝑈 +𝐵𝑉 ),T = (· · · ,T𝑏 , · · · ,T𝐵𝑈 +𝐵𝑉 ).

(1)

The weight matrix𝑊 in an ONN layer is partitioned into 𝐾 × 𝐾
sub-matrices. Each sub-matrix is constructed by two unitaries𝑈 𝛼𝑝𝑞
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Figure 2: The proposed photonic SuperMesh training flow
ADEPT, followed by variation-aware ONN training.

and 𝑉𝛼𝑝𝑞 and a diagonal matrix Σ𝑝𝑞 . The layout topology 𝛼 of two
unitaries is the primary search target, shared among all blocks.

3.2 Search Space Specification
Our search space focuses on the tensor core circuit topology, not layer
configurations like conventional NAS work. As illustrated in Fig. 1,
we define the following block-wise search space for the unitaries,

𝑈 𝛼𝑝𝑞 =

𝐵𝑈∏
𝑏=1
P𝑏T𝑏R(Φ𝑏𝑝𝑞), 𝑉𝛼𝑝𝑞 =

𝐵𝑈 +𝐵𝑉∏
𝑏=𝐵𝑈 +1

P𝑏T𝑏R(Φ𝑏𝑝𝑞) . (2)

Unitaries 𝑈 and 𝑉 consist of 𝐵𝑈 and 𝐵𝑉 blocks, respectively. For
simplification, we focus on𝑈 and refer to {𝐵𝑈 , 𝐵𝑉 } as 𝐵 thereafter.

The first structure in the block is a column of 𝐾 phase shifters,
which can be described by a diagonal matrix R(Φ𝑏𝑝𝑞),

R(Φ𝑏𝑝𝑞) = diag(𝑒−𝑗𝜙1 , · · · , 𝑒−𝑗𝜙𝐾 ) . (3)

The second structure in the block is a column of 2-by-2 direc-
tional couplers 𝑇 ’s placed from the 𝑠𝑏 -th waveguide, which can be
described by a block diagonal matrix T𝑏 . We will only include 50:50
DCs in our design, i.e., 𝑡 =

√
2/2. This coupler column enables infor-

mation interaction between adjacent waveguides. Besides, cascading
DC layers in an interleaved way naturally allows more light signals
to interfere with each other. Thus we have 𝑠𝑏 = 1 if 𝑏 is even and
𝑠𝑏 = 0 if 𝑏 is odd, as shown in Fig. 1.

The last layer in the block is designed for pure waveguide routing.
This layer consists of a network of waveguide crossings, whose
transfer matrix belongs to the permutation matrix family,

P𝑏 ∈ {0, 1}𝐾×𝐾 ,
∑︁
𝑗

P𝑖,𝑗
𝑏

=1 ∀𝑖 ∈ [𝐾 ],
∑︁
𝑖

P𝑖,𝑗
𝑏

=1 ∀𝑗 ∈ [𝐾 ] . (4)

The search space for P is extremely large since 𝐵𝑚𝑎𝑥 size-𝐾 permu-
tations contain total (𝐾 !)𝐵𝑚𝑎𝑥 possible combinations.

In summary, one unitary photonic mesh contains 𝐵 blocks, each
including a PS layer, a DC layer, and a CR layer. The topology 𝛼 in-
cludes the number of blocks 𝐵𝑈 and 𝐵𝑉 , the waveguide connections
P in the permutation layer, and the locations to put directional cou-
plers described by T . The total search space is O

(
(𝐾 · 𝐾 !/2)𝐵𝑚𝑎𝑥

)
.

3.3 Fully Differentiable SuperMesh Training
To solve the highly discrete PTC topology design problem in such
an enormous search space, we propose a differentiable SuperMesh
training flow ADEPT in Fig. 2.

The total optimization variables in the SuperMesh training con-
tain (1) diagonal matrix Σ, (2) phases Φ in the PS layer, (3) directional
couplersT in the DC layer, (4) permutationmatricesP of the CR layer,
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Figure 3: Top: permutation optimization procedure. Bottom:
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(5) the number of blocks 𝐵. Jointly optimizing all those continuous
and discrete variables is highly ill-conditioned, leading to prohibitive
optimization difficulty. We separate them into two sets: (1) Σ, Φ, T ,
and P belong to the SuperMesh weights, and (2) 𝐵 belong to the
architecture parameter group. The entire ADEPT flow contains two
stage, shown in Fig. 2. The first SuperMeshWarmup stage only opti-
mizes weights for initial exploration. The second SuperMesh Search
stage optimizes two parameter groups alternately. We periodically
enter the SuperMesh weight training phase to optimize Σ, Φ, T , and
P and switch to the architecture parameter training phase to search
𝐵. After ADEPT SuperMesh training, we apply variation-aware train-
ing to target ONN models with the searched PTC topology. Now we
introduce how to optimize those variables one by one.
3.3.1 Optimize SuperMesh Depth 𝐵. The depth of SuperMesh can
be relaxed by constructing a stochastic super block. During the
inference, the 𝑏-th block𝑈𝑏 is either sampled and executed (𝑈𝑏,1) or
skipped as an identity projection (𝑈𝑏,2) with the probability of

𝑃𝜃𝑏

(
𝑈𝑏 = 𝑈𝑏,𝑖

)
= 𝑒𝜃𝑏,𝑖

/∑︁
𝑖

𝑒𝜃𝑏,𝑖 . (5)

The probability distribution of block-𝑏 is parametrized by the sam-
pling coefficient 𝜃𝑏 . The forward propagation of the 𝑏-th block is,

𝑥𝑏+1 =
2∑︁
𝑖=1

𝑚𝑏,𝑖𝑈𝑏,𝑖𝑥𝑏 , 𝑈𝑏,1 = 𝐼 , 𝑈𝑏,2 = P𝑏T𝑏R𝑏 , (6)

where the variable𝑚𝑏,𝑖 determines the probability to select the 𝑏-th
block. Therefore, instead of searching 𝐵 in the discrete space, the
problem can be relaxed to the optimization of the probability 𝑃𝜃 .
Gumbel-Softmax (GS) trick [16] is employed as follows,

𝑚𝑏,𝑖 = GumbelSoftmax(𝜃𝑏,𝑖 |𝜃𝑏 ) = 𝑒 (𝜃𝑏,𝑖+𝑔𝑏,𝑖 )/𝜏
/∑︁

𝑖

𝑒 (𝜃𝑏,𝑖+𝑔𝑏,𝑖 )/𝜏 . (7)

Softmax achieves continuous relaxation, and the Gumbel noise 𝑔𝑏,𝑖
introduces stochasticity for better exploration controlled by the tem-
perature 𝜏 . Note that the depth 𝐵 has a range of [𝐵𝑚𝑖𝑛/2, 𝐵𝑚𝑎𝑥/2].
Hence, the SuperMesh𝑈 consists of (𝐵𝑚𝑎𝑥/2) super blocks to upper-
bound the search space. Meanwhile, the last (𝐵𝑚𝑖𝑛/2) blocks are
always sampled with 100% certainty to lower-bound the search
space, i.e.,𝑚𝑏,2 = 1,∀𝑏 > 𝐵𝑚𝑎𝑥/2 − 𝐵𝑚𝑖𝑛/2.
3.3.2 Optimize Permutation Matrices P. Permutations are hard to
search directly due to the factorial and highly discrete search space.



The discrete constraint in Eq. (4) has a continuous format [4],

P𝑏 ≥ 0; ∥P𝑖,:
𝑏
∥1 = ∥P𝑖,:𝑏 ∥2,∀𝑖; ∥P

:, 𝑗
𝑏
∥1 = ∥P :, 𝑗

𝑏
∥2,∀𝑗, (8)

where the row-wise and column-wise ℓ1-norm equals to the ℓ2-norm.
Eq. (8) can be relaxed to its convex hull, i.e., Birkhoff polytope,

P𝑏 ≥ 0, 1𝑇P𝑏 = 1𝑇 , P𝑏1 = 1, 1 = (1, · · · , 1)𝑇 . (9)

As shown in Fig. 3, we use 1) reparametrization to approximately
bound P in the Birkhoff polytope and 2) augmented Lagrangian
method (ALM) to push P to a real permutation. Hence we enable dif-
ferentiable permutation optimization during the SuperMesh weight
training phase. We add an extra ALM term L𝑃 in the objective,

L𝑃 =

𝐵𝑚𝑎𝑥∑︁
𝑏=1

𝐾∑︁
𝑖=1

𝜆𝑟
𝑏,𝑖

ΔP̃𝑖,:
𝑏
+
𝐵𝑚𝑎𝑥∑︁
𝑏=1

𝐾∑︁
𝑗=1

𝜆𝑐
𝑏,𝑗

ΔP̃ :, 𝑗
𝑏

+ 𝜌
2

𝐵𝑚𝑎𝑥∑︁
𝑏=1

𝐾∑︁
𝑖=1

𝜆𝑟
𝑏,𝑖
(ΔP̃𝑖,:

𝑏
)2+ 𝜌

2

𝐵𝑚𝑎𝑥∑︁
𝑏=1

𝐾∑︁
𝑗=1

𝜆𝑐
𝑏,𝑗
(ΔP̃ :, 𝑗

𝑏
)2,

(10)

where 𝜆𝑟 , 𝜆𝑐 ∈ R𝐵𝑚𝑎𝑥×𝐾 are the row-wise and column-wise La-
grangian multipliers, 𝜌 is the scalar quadratic penalty coefficient,
and Δ denotes the difference between the ℓ1 norm and ℓ2 norm of
the vector, e.g., ΔP̃𝑖,:

𝑏
= ∥P̃𝑖,:

𝑏
∥1 − ∥P̃𝑖,:𝑏 ∥2. This is different from the

standard ALM formulation as the quadratic term is also controlled
by 𝜆. In this way, the optimization is dominated by the task-specific
loss at the beginning and gradually honors the constraint.

We reparametrize P𝑏 as P̃𝑏 to simplify the constraints in Eq. (9).
We (1) first apply absolute operation to the relaxed matrix to guaran-
tee non-negativity, (2) then apply column-/row-wise normalization,
and (3) finally apply row-wise soft projection to force binarization,

P′
𝑏
=
|P𝑏 |

1𝑇 |P𝑏 |
, P′′

𝑏
=
P′
𝑏

P′
𝑏
1
, P̃𝑏 = Ω𝑃 (P′′𝑏 )

Ω𝑃 (P
′′𝑖,𝑗
𝑏
) =


Round(P

′′𝑖,𝑗
𝑏
) if max(P

′′𝑖,:
𝑏
) ≥ 1 − 𝜖,

P
′′𝑖,𝑗
𝑏

if max(P
′′𝑖,:
𝑏
) < 1 − 𝜖

,

(11)

where 𝜖 is the projection threshold, typically set to 0.05. The soft
projection stops gradients when P̃ is very close to a real permutation,
which is designed to avoid gradient instability issues caused by an
overly large linear penalty term as 𝜆 quickly increases.

At each iteration in the SuperMesh weight training phase, we
first update the relaxed permutation matrices using gradient-based
methods, then we update the Lagrangian multipliers as follows,

𝜆𝑟
𝑏,𝑖
+= 𝜌

(
ΔP̃𝑖,:

𝑏
+ 1
2
(ΔP̃𝑖,:

𝑏
)2
)
, 𝜆𝑐

𝑏,𝑗
+= 𝜌

(
ΔP̃ :, 𝑗

𝑏
+ 1
2
(ΔP̃ :, 𝑗

𝑏
)2
)
. (12)

StabilizeOptimization via Initialization andNormalization.The
relaxed P̃ cannot guarantee orthogonality during optimization.
Thus cascading multiple such matrices ruins the orthogonality of
𝑈 and 𝑉 and causes training difficulty due to statistical instabil-
ity. To mitigate it, we initialize P with a smoothed identity, i.e.,
P0 = 𝐼 ( 12 −

1
2𝐾−2 ) +

1
2𝐾−2 , shown in Fig. 3. Note that initializing it

with random permutations does not work since no gradients will
flow back to zero entries. In addition, we propose a second technique
to solve this via row-wise and column-wise ℓ2 normalization on the
constructed𝑈 and 𝑉 , respectively. By doing this, the normalized𝑈
and 𝑉 can approximate the properties of true unitaries. This nor-
malization takes no effects when𝑈 and𝑉 converge to real unitaries
but helps to stabilize the matrix statistics.
Scheduling Coefficient 𝜌 . 𝜌 determines the speed to increase 𝜆.
A large 𝜌 quickly traps P̃ to a nearby suboptimal permutation. An

overly small 𝜌 has too weak constraints on the permutation. Thus
we increase 𝜌 as 𝜌 ← 𝜌𝛾𝑡 ,∀𝑡 =0, · · · ,𝑇 , such that 𝜌𝑇 ≈ 1𝑒4 · 𝜌0.
Stochastic Permutation Legalization (SPL). Due to high non-
convexity in the problem Eq. (10), our ALM-based method does not
guarantee convergence to a legal permutation. Instead, it may stuck
at saddle points shown in Fig. 3. To force P̃ to a legal permuta-
tion after SuperMesh training, we propose the following stochastic
permutation legalization (SPL),
𝑃𝑆𝑄∗ = SVD

(
Softmax(P/𝜏)

) ��
𝜏→0+ , PSPL = Softmax

(
( |𝑃𝑄∗ | + 𝛿)/𝜏

) ��
𝜏→0+ ,

(13)
where𝛿 ∼ N(0, 𝜎2).We given an example in Fig. 3. The first Softmax
binarizes the matrix. Then, the SVD-based projection pushes the
solution away from saddle points. After that, random perturbations
are added to break the ties between different rows. The final Softmax
pushes it into a legal permutation in a stochastic manner. We repeat
the second equation by multiple times until we find a legal solution
without introducing too many extra crossings.
3.3.3 Optimize Directional Couplers T . The transmission coeffi-
cient 𝑡 of each directional coupler in the DC layer is a binary op-
timization variable 𝑡 ∈ {

√
2
2 , 1}. 𝑡=1 represents direct waveguide

connection without placing a DC. We treat 𝑡 as a SuperMesh weight
and perform quantization-aware training to learn the DC layers. The
DC binarization and its gradient are given as follows,

𝑇 (𝑡𝑞) = 𝑇 (Q (𝑡 )), Q(𝑡 ) = (sign(𝑡 ) + 1) ×
2 −
√
2

4
+
√
2
2
,

𝜕L
𝜕𝑡

= min
(
1,max

(
− 1, 𝜕L

𝜕𝑡𝑞
× 2 −

√
2

4
) )
.

(14)

3.3.4 Optimize Diagonal Matrix Σ and Phases Φ. We treat the diag-
onal matrix Σ and phase shifter configurations Φ as the SuperMesh
weights. During SuperMesh training, we simply apply the standard
backpropagation to train them.

3.4 PDK-Adaptive Footprint-Constrained
SuperMesh Optimization

An important hardware constraint we need to honor is the target
photonic circuit footprint, given the component sizes from a foundry
PDK. We solve the inequality footprint constraint by adding a prob-
abilistic footprint penalty term LF ,

LF =


𝛽

(
E[Fprox (𝛼) ]/𝐹𝑚𝑎𝑥

)
, E[F(𝛼) ] > 𝐹𝑚𝑎𝑥 ,

−𝛽
(
E[Fprox (𝛼) ]/𝐹𝑚𝑖𝑛

)
, E[F(𝛼) ] < 𝐹𝑚𝑖𝑛,

0, otherwise,

E[F(𝛼) ] =
𝐵𝑚𝑎𝑥∑︁
𝑏=1

𝑚𝑏,2F𝑏 , E[Fprox (𝛼) ] =
𝐵𝑚𝑎𝑥∑︁
𝑏=1

𝑚𝑏,2F𝑏,prox,

F𝑏 = #PS(R𝑏 ) · FPS + #DC(T𝑏 ) · FDC + #CR(P𝑏 ) · FCR,

F𝑏,prox = #PS(R𝑏 ) · FPS + #DC(T𝑏 ) · FDC + 𝛽CR ∥ P̃𝑏 − 𝐼 ∥22 · FCR,

#PS(R𝑏 ) = 𝐾, #DC(T𝑏 ) =
(𝐾−𝑠𝑏 )/2∑︁
𝑖=1

( 2Q(𝑡𝑖 )√
2 − 2

+ 2
2 −
√
2

)
,

(15)

where 𝛽 is the penalty weight, and 𝐹𝑚𝑎𝑥 and 𝐹𝑚𝑖𝑛 is set to 0.95𝐹𝑚𝑎𝑥
and 1.05𝐹𝑚𝑖𝑛 to leave a 5% constraint margin. This penalty term
allows SuperMesh to control its expected footprint. Now we give a
detailed breakdown of our probabilistic footprint penalty.
Footprint of PS. As an active device, PS is not fixed after man-
ufacturing. Instead, the phase shifts Φ are important weights to
guarantee enough PTC reprogrammability and ONN expressiveness.
Hence, we always assume a full column of PS, i.e., #PS(R𝑏 ) = 𝐾 .



Table 1: Evaluate searched PTCs with different sizes and footprint targets on MNIST with a 2-layer CNN. The total block number
is #Blk=𝐵𝑈 + 𝐵𝑉 . #PS is omitted since we have #PS =𝐾 ·#Blk. All footprint constraints follow 𝐹𝑚𝑖𝑛 = 0.8𝐹𝑚𝑎𝑥 . ADEPT-a1 to ADEPT-a5
cover 5 different footprint targets with the device specification from AMF foundry PDKs. In the AMF PDKs [1], the footprint of
PS, DC, and CR is 6800 𝜇𝑚2, 1500 𝜇𝑚2, and 64 𝜇𝑚2, respectively. All footprint is reported in the unit of 1/1000 𝜇𝑚2.

PTC Size Metrics MZI-ONN [14] FFT-ONN [6] ADEPT-a1 ADEPT-a2 ADEPT-a3 ADEPT-a4 ADEPT-a5

8×8

#CR/#DC/#Blk 0/112/32 16/24/6 24/17/5 17/19/6 26/27/8 27/36/11 33/41/13
[𝐹𝑚𝑖𝑛 , 𝐹𝑚𝑎𝑥 ] - - [240, 300] [336, 420] [432, 540] [528, 660] [624, 780]
Footprint F 1909 363 299 356 478 654 771
Accuracy (%) 98.63 98.43 98.26 98.49 98.56 98.48 98.69

16×16

#CR/#DC/#Blk 0/480/64 88/64/8 45/28/4 68/43/6 127/59/8 174/71/10 131/85/12
[𝐹𝑚𝑖𝑛 , 𝐹𝑚𝑎𝑥 ] - - [480, 600] [672, 840] [864, 1080] [1056, 1320] [1248, 1560]
Footprint F 7683 972 480 722 967 1206 1441
Accuracy (%) 98.65 98.25 98.16 98.40 98.24 98.56 98.57

32×32

#CR/#DC/#Blk 0/1984/128 416/160/10 223/60/4 333/87/6 628/178/8 691/150/10 717/179/12
[𝐹𝑚𝑖𝑛 , 𝐹𝑚𝑎𝑥 ] - - [960, 1200] [1344, 1680] [1728, 2160] [2112, 2640] [2496, 3120]
Footprint F 30829 2443 975 1457 1959 2445 2926
Accuracy (%) 98.68 97.97 98.10 98.18 98.36 98.49 98.39

Footprint of DC. DC is typically fixed and not tunable. Hence the
position to place a DC need to be determined during the PTC design
stage. The footprint of a DC layer is a simple summation of all cou-
plers parameterized by their binarized coefficient 𝑡𝑞 , which is fully
differentiable by using straight-through estimators.
Footprint of CR. The number of waveguide crossings, i.e., #CR, can
be obtained by sorting rows of the permutation P𝑏 to an identity 𝐼
and finding the minimum number of adjacent swaps. However, this
crossing counting procedure #CR (P𝑏 ) itself is non-differentiable.
When calculating the footprint penalty, we replace #CR(P𝑏 )FCR
with a differentiable proxy term 𝛽CRFCR∥P̃𝑏 − 𝐼 ∥22, where 𝛽CR is used
to balance the penalty on DC and CR.
Analytical Bound of the SuperMesh Block Number. Given the
device footprint specification, we can actually calculate the maxi-
mum/minimum footprint of each block. Based on the target foot-
print, we can find an analytical bound of the block number for our
SuperMesh, i.e., 𝐵𝑚𝑎𝑥 and 𝐵𝑚𝑖𝑛 , without manual definition,
F𝑏,𝑚𝑖𝑛 =𝐾FPS + FDC, F𝑏,𝑚𝑎𝑥 =F𝑏,𝑚𝑖𝑛 +𝐾FDC/2 +𝐾 (𝐾−1) FCR/2,
𝐵𝑚𝑎𝑥 = ⌈𝐹𝑚𝑎𝑥 /F𝑏,𝑚𝑖𝑛 ⌉, 𝐵𝑚𝑖𝑛 = ⌊𝐹𝑚𝑖𝑛/F𝑏,𝑚𝑎𝑥 ⌋ .

(16)

4 EXPERIMENTAL RESULTS
4.1 Experiment Setup
Datasets.We search PTCs on MNIST and evaluate on MNIST, Fash-
ionMNIST, SVHN [12], and CIFAR-10 datasets.
NN Models.We perform SuperMesh training on MNIST with a 2-
layer CNN (C32K5-BN-ReLU-C32K5-BN-ReLU-Pool5-FC10), where
C32K5 is a 32-channel convolution with a kernel size of 5×5. In
variation-aware training, we use LeNet-5 and VGG-8.
Training Settings. We train SuperMesh for 90 epochs using Adam
optimizer with an initial learning rate (lr) of 0.001 and a cosine lr
scheduler. We set the weight decay rate to 1e-4 for Φ and Σ, and 5e-4
for 𝜃 . We exponentially decrease the Gumbel-softmax temperature
𝜏 from 5 to 0.5. We set 10 epochs in the SuperMeshWarmup stage.
In the SuperMesh Search stage, we train weights and arch. params
with a ratio of 3:1. In the permutation ALM, we set the initial 𝜌0=(1e-
7)×𝐾/8. We set 𝛽 and 𝛽CR to 10 and 100 in the footprint penalty.
At the 50-th epoch, we force P to a legal permutation by stochas-
tic permutation legalization (SPL). Then we continue the alternate
SuperMesh training in the rest 40 epochs. During re-training, we
sample a SubMesh from the learned distribution 𝑃𝜃 that satisfies the

footprint constraints. Then we perform variation-aware training
with Gaussian phase noises Δ𝜙 ∼ N(0, 0.022) to increase robustness.

4.2 Main Results
We search PTC topologies with the proposed ADEPT flow on three
different PTC sizes (8×8, 16×16, 32×32) with various footprint con-
straints. We denote our searched PTC designs as ADEPT-a1 to ADEPT-
a5. In Table 1, we compare our ADEPT-series to prior manual PTC
designs, i.e., MZI-ONN [14] and FFT-based ONN [6, 7] on AMF
foundry PDKs. For a fair comparison, the butterfly mesh in the FFT-
based PTC is not limited to Fourier-transform but a general trainable
transform [7]. On three PTC sizes, the searched ADEPT-series shows
superior adaptability to various footprint constraints. Compared
to the largest MZI-based PTC, our ADEPT-series shows competitive
learnability with 2×-30× footprint reduction. ADEPT-series outper-
forms the FFT-based PTC with higher expressivity, especially on
large PTC sizes, and saves up to 2.5× area. ADEPT shows superior
adaptability to balance footprint and expressiveness.
Adapt PTCs to Different Foundry PDKs. To adapt ADEPT to differ-
ent device specifications, we change the foundry PDK from AMF [1]
to AIM photonics [15], which provides much larger waveguide cross-
ings. In Table 2, ADEPT finds feasible PTC topology that avoids using
many crossings to honor the strict footprint constraints. The smallest
ADEPT-a0 achieves comparable accuracy to the FFT-based PTC with
2.4× smaller footprint. Compared to MZI-based PTC, our ADEPT-a5
is 2.9× more compact with similar expressiveness.
Transfer to Different ONNs and Datasets. To further validate the
expressiveness of ADEPT-series searched on a proxy NN model and
dataset, we apply searched PTC structures to other NN architectures
and more challenging datasets in Table 3. On three datasets with
LeNet-5 and VGG-8, our searched 16×16 ADEPT-a2 and ADEPT-a4
significantly outperform FFT-based design with much higher accu-
racy and 26% footprint reduction. Compared to the MZI-based PTC,
ADEPT-a4 can save over 84% footprint with competitive performance.
Noise Robustness of Searched PTCs. In Fig. 4, we inject phase
drifts into the circuit and perform variation-aware training on all
PTC designs [8, 17]. Even with noise-aware training, the MZI-based
ONN still suffers a severe accuracy drop due to overly large PTC
depth. In contrast, our searched PTCs show similar or even better
noise robustness than the logarithmic-depth FFT-based design.



Table 2: MNIST accuracy with 16×16 PTCs on AIM photonics PDKs [15], where FPS=2500 𝜇𝑚2, FDC=4000 𝜇𝑚2, and FCR=4900 𝜇𝑚2.

PTC Size Metrics MZI-ONN [14] FFT-ONN [6, 7] ADEPT-a0 ADEPT-a1 ADEPT-a2 ADEPT-a3 ADEPT-a4 ADEPT-a5

16×16

#CR/#DC/#Blk 0/480/64 88/64/8 15/35/5 1/58/8 26/58/8 17/92/13 25/99/14 89/111/16
[F𝑚𝑖𝑛 , F𝑚𝑎𝑥 ] - - [384, 480] [480, 600] [672, 840] [864, 1080] [1056, 1320] [1248, 1560]
Footprint F 4480 1007 414 557 679 971 1079 1520
Accuracy (%) 98.77 98.10 98.15 98.30 98.32 98.55 98.64 98.72

Table 3: Adapt searched 16×16 PTCs to LeNet-5/VGG-8 and
different datasets on AMF PDKs. Test accuracy (%) is given in
the table. The PTC is searched on MNIST and a 2-layer CNN.

Model Datasets MZI [14] FFT [6, 7] ADEPT-a2 ADEPT-a4

Footprint 7683 972 722 1206

LeNet-5
FMNIST 87.33 85.87 85.89 87.07
SVHN 69.91 65.04 65.26 69.20

CIFAR-10 51.40 42.75 51.26 52.42

VGG-8
FMNIST 89.59 88.62 89.23 89.16
SVHN 77.87 75.22 75.86 77.20

CIFAR-10 68.90 63.57 66.30 68.50
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Figure 4: Robustness evaluation of 16×16 PTCs with various
phase noise intensities. (a) 2-layer CNN on MNIST. (b) LeNet-
5 on FMNIST. All models are trained with variation-aware
training. The shadow marks ±3𝜎 uncertainty over 20 runs.
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Figure 5: (a) Scan initial 𝜌 in permutation ALM from 5e-8 to 5e-
6. The red lines are averaged 𝜆. Blue curves are permutation
errors, i.e., average difference between ℓ1-norm and ℓ2-norm.
(b) Scan 𝛽 in footprint penalty from 0.001 to 10. Red lines
are expected footprint E[F (𝛼)] of ADEPT-a1. Black curves are
footprint penalty. The green region marks the constraint.

4.3 Ablation Studies
Permutation ALM. To better understand the permutation learning
process, we scan different initial values of the ALM penalty coeffi-
cient 𝜌0 and plot the optimization curves in Fig. 5(a). Our method is
insensitive to the hyper-parameter settings and can stably converge
with the proposed adaptive penalty scheduling.
Footprint Penalty. In Fig. 5(b), the expected PTC footprint is visu-
alized with different penalty strengths. With 𝛽=∼10, the expected
footprint of SuperMesh can be well-bounded. If 𝛽 is too small, most
sampled PTC structures from 𝑃𝜃 will violate the constraint.

5 CONCLUSION
In this work, for the first time, we propose an automatic differen-
tiable framework ADEPT for efficient photonic tensor core design.
Our ADEPT constructs a probabilistic photonic SuperMesh, employs
an augmented Lagrangian method to learn waveguide connections,
and adopts binarization-aware training to search coupler locations.
With a probabilistic footprint penalty method, ADEPT integrates cir-
cuit area constraints into SuperMesh training procedure to adapt
the PTC to various device specifications and footprint constraints.
Extensive experiments show the superior flexibility of ADEPT for
automated PTC topology search adaptive to foundry PDKs. The
searched PTC design outperforms prior manual designs with com-
petitive expressiveness, 2×-30× smaller footprint, and superior ro-
bustness. ADEPT opens a new paradigm in photonic neurocomputing
by "nurturing" photonic circuit design via AI and automation.
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