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Abstract— Optical neural networks (ONNs) have attracted extensive at-
tention due to its ultra-high execution speed and low energy consumption.
The traditional software-based ONN training, however, suffers the prob-
lems of expensive hardware mapping and inaccurate variation modeling
while the current on-chip training methods fail to leverage the self-learning
capability of ONNs due to algorithmic inefficiency and poor variation-
robustness. In this work, we propose an on-chip learning method to
resolve the aforementioned problems that impede ONNs’ full potential for
ultra-fast forward acceleration. We directly optimize optical components
using stochastic zeroth-order optimization on-chip, avoiding the traditional
high-overhead back-propagation, matrix decomposition, or in situ device-
level intensity measurements. Experimental results demonstrate that the
proposed on-chip learning framework provides an efficient solution to
train integrated ONNs with 3∼4× fewer ONN forward, higher inference
accuracy, and better variation-robustness than previous works.

I. INTRODUCTION

As Moore’s Law winds down, it becomes challenging for electronic
digitals to meet with escalating computational demands of machine
learning applications. In recent years, the optical neural network
(ONN) has been demonstrated to be an emerging neuromorphic
platform with ultra-low latency, high bandwidth, and high energy
efficiency, which becomes a promising alternative to its traditional
electronic counterpart. Computationally-intensive operations in neural
networks, e.g., matrix multiplication, can be efficiently realized by
optics at the speed of light [1]–[4]. Shen, et al. [1] demonstrated a clas-
sical integrated fully-optical neural network platform to implement a
multi-layer perceptron. Based on matrix singular value decomposition
(SVD) and unitary parametrization [5], [6], the weight matrices are
mapped onto cascaded Mach-Zehnder interferometer (MZI) arrays to
realize ultra-fast neural network inference with over 100 GHz photo-
detection rate and near-zero energy consumption [7].

However, training methodologies for integrated ONNs still have
limited efficiency and performance these days. The mainstream ap-
proach is to offload the training process to pure software engines,
obtain pre-trained weight matrices using classical back-propagation
(BP) algorithm, and then map the trained model onto photonic hard-
ware through matrix decomposition and unitary parametrization [1],
[2]. This traditional method benefits from off-the-shelf deep learning
toolkits for easy training of weight matrices under a noise-free
environment. Nevertheless, this inevitably bears several downsides in
efficiency, performance, and robustness. First, pure software-based
ONN training is still bottlenecked by the performance of digital
computers, which suffers inefficiency when emulating the actual
ONN architectures given the expensive computational cost required
in matrix decomposition and parametrization. Hence, there exist great
potentials to fully utilize ultra-fast photonic chips to accelerate the
training process as well. Second, photonic chips could be exposed
to various non-ideal effects [1], [8]–[10], e.g., device manufacturing
variations, limited phase encoding precision, and thermal cross-talk,
thus the ONN model trained by pure software methods could suffer

severe performance degradation and poor variation-robustness for
lack of accurate non-ideality modeling. Simply mapping the back-
propagation algorithm onto photonic chips is conceptually straightfor-
ward but may not fully exploit the self-learning capability of ONN
chips. Back-propagation is technically difficult to be implemented on
chip, especially considering the expensive hardware overhead and
time-consuming matrix decomposition procedure. Also, decoupling
the ONN hardware and software training process disables potential
online learning applications.

A brute-force phase tuning algorithm is proposed and adopted
in [1], [11] to perform ONN on-chip training. Each MZI phase is
individually perturbed by a small value and then updated based on the
function evaluation results. This greedy parameter search algorithm
is intractable when tuning a large number of phases and may not
be robust enough to handle non-ideal variations. To mitigate the
inefficiency issue of the above brute-force algorithm, an in situ adjoint
variable method (AVM) [12] is applied to perform ONN on-chip
training. This inverse design method directly computes the gradient
w.r.t. MZI phases by propagating through the chip back-and-forth for
several times. However, it strictly assumes the photonic system is
fully-observable and requires light field intensity measurement on each
device, which is technically challenging to scale to larger systems.
Evolutionary algorithms, e.g., genetic algorithm (GA) and particle
swarm optimization (PSO), are applied to train ONNs by emulating
the biological evolution process [13] with a large population.

The above on-chip training protocols are only demonstrated to
handle small photonic systems with <100 MZIs, while in this work,
we propose a novel framework FLOPS that extends the learning scale
to ∼1000 MZIs with higher training efficiency, higher inference accu-
racy, and better robustness to non-ideal thermal variations. Compared
with the previous state-of-the-art methods [1], [11], [13], our on-chip
learning framework FLOPS has the following advantages.

• Efficiency: our learning method leverages stochastic zeroth-order
optimization with a parallel mini-batch based gradient estimator
and achieves 3∼4× fewer ONN forward than previous methods.

• Accuracy: our proposed optimization algorithm is extended with
a light-weight second-stage learning procedure SparseTune to
perform sparse phase tuning, achieving further accuracy boost
while the efficiency superiority still maintains.

• Robustness: our method is demonstrated to improve the test
accuracy of ONNs under thermal cross-talk and produces better
variation-robustness than previous methods.

The remainder of this paper is organized as follows. Section
II introduces the ONN architecture and previous training methods.
Section III discusses details of our proposed framework. Section IV
analyzes FLOPS in the presence of thermal variations. Section V
evaluates the accuracy, efficiency, and robustness improvement of
FLOPS over previous works, followed by the conclusion in Section VI.



Fig. 1: Schematic of an MZI triangular array and a closeup view of
the MZI structure.

II. PRELIMINARIES

In this section, we will introduce the architecture of integrated
ONNs, current ONN training methods, and background knowledge
about stochastic zeroth-order optimization with gradient estimation.

A. ONN Architecture and Training Methods

The ONN is a photonic implementation of artificial neural networks.
It implements matrix multiplication with optical inference units (OIU)
consisting of cascaded MZIs, shown in Fig. 1. Each MZI is a
reconfigurable photonic component that can produce interference of
input light signals as follows [1],(
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The phase shift φ produced in the coupling region of an MZI can be
achieved by an optical phase shifter. The triangular structure of an
MZI array shown in Fig. 1 is proven to realize a unitary matrix based
on unitary group parametrization [1], [5],

U(n) = D

2∏
i=n

i−1∏
j=1

Rij . (2)

where the 2-dimensional planar rotator Rij is an identity matrix
except that entries at (i, i), (i, j), (j, i), (j, j) are cosφ, sinφ, -sinφ,
cosφ, respectively. D is a matrix where only its main diagonal has
-1 or 1. Each Rij can be implemented by an MZI in the OIU.
We denote all parametrized phases as a phase vector Φ. Since an
m × n weight matrix W ∈ Rm×n can be decomposed via singular
value decomposition (SVD) W = UΣV ∗, where U ∈ Rm×m,
V ∗ ∈ Rn×n are square unitary matrices and Σ is an m × n non-
negative diagonal matrix, we can map U and V ∗ onto two OIUs
and Σ onto optical attenuators/amplifiers to realize vector-matrix
multiplication.

A training procedure is needed to determine the configuration of
each MZI. Traditionally, this can be achieved by pure software training
based on back-propagation (BP) algorithm, and then map those pre-
trained matrices onto MZI arrays through SVD and Eq. (2). This BP-
based training decouples the software and hardware implementation,
leading to efficiency limitation by electronic computers and robustness
issues due to inaccurate variation modeling. Instead of training the
weight matrices, a possible alternative approach is to learn MZI
configurations on chip directly. As the parametrization procedure is
differentiable, we can derive the theoretical derivative of an unitary
matrix U w.r.t. a phase φij [1],

∂U

∂φij
= DRn1Rn2Rn3 · · ·

∂Rij

∂φij
· · ·R31R32R21. (3)

However, the computational cost of this theoretical derivative is
prohibitive to be involved in the BP-based training.

To utilize the ultra-fast speed of ONN forward propagation, a
brute-force method [1], [11] that iteratively updates each phase is
proposed for MZI tuning. After O(|Φ|) number of function queries,

all phases are updated once. Adjoint variable method (AVM) [12] is
a recently proposed inverse design method that computes the exact
gradient based on in situ intensity measurement, which is intrinsically
unscalable as it is based on expensive device-level signal detection.
Evolutionary algorithms, e.g., PSO, are also applied to search for
optimal MZI configurations in the phase space [13]. However, a high-
dimensional parameter space could lead to optimization inefficiency
and unsatisfying optimality as they typically require a large population
and inevitably faces pre-mature issues.

B. Optimization with Zeroth-Order Gradient Estimation

Zeroth-order optimization (ZOO) has received much attention re-
cently [14], [15] as it enables effective optimization when the explicit
gradient of the objective function is infeasible, e.g., reinforcement
learning and black-box adversarial attack on DNNs. ZOO gains much
momentum as it is capable of handling higher-dimensional problems
than traditional methods, e.g., Bayesian optimization, and can be
integrated with extensive state-of-the-art first-order optimization al-
gorithms with the true gradient being replaced by the approximated
zeroth-order gradient [14], [15]. ZOO uses a Gaussian function
approximation to estimate the local value of the original function f(θ)
as follows,

fσ(θ) = E∆θ

[
f(θ + ∆θ)

]
=

1

σ
√

(2π)d

∫
f(θ + ∆θ)e

−||∆θ||22
2σ2 d∆θ,

(4)
where ∆θ is a perturbation sampled from Gaussian distribution
N (0, σ2). Nesterov et al. [16] proves a bound of the difference
between the true gradient and its Gaussian approximation if the
original function f(θ) is β-smooth,

||∇fσ(θ)−∇f(θ)|| ≤
σ

2
β(d+ 3)3/2, ∀θ ∈ Rd. (5)

Based on this, we can approximate the true gradient ∇f(θ) through
estimating this surrogate gradient ∇fσ(θ) with the above error bound.
To estimate ∇fσ(θ), a symmetric difference quotient method is
typically used,

∇̂f(θ) =
1

2σ2
(f(θ + ∆θ)− f(θ −∆θ))∆θ. (6)

Such a sampling-based first-order oracle is an unbiased estimator
of fσ(θ). Passing this zeroth-order gradient estimation to a first-
order optimization algorithm, e.g., gradient descent, we can perform
optimization only with function queries.

III. ON-CHIP ONN TRAINING BASED ON ZEROTH-ORDER

GRADIENT ESTIMATION

A. Phase Domain Characterization

To better characterize the optimization problem of ONN on-chip
training, we illustrate details of our optimization domain. Back-
propagation based methods optimize in the weight matrix domain,
while on-chip learning methods optimize in the latent phase domain.
Bridged by SVD and unitary parametrization (Eq. (2)), the above
two domains can switch to each other equivalently. However, co-
optimization between those two domains is theoretically difficult.
First, two domains are fully coupled and the transformation is highly-
nonlinear and not element-wise. Any change in a phase represents
a high-dimensional rotation of the weight matrix, thus leading to
perturbation of all entries in the weight matrix, and vice versa. Besides,
the phase domain is not an unbounded space as the weight domain but
a high-dimensional hypercube with a valid phase shift range of [-π, π).
Though this validity constraint can be guaranteed by projection onto
a feasible set, it will cause optimization performance penalty. Since



Fig. 2: Framework of ONN on-chip training with stochastic zeroth-order optimization. Parallel signals with k different wavelengths are shown.

phases will intrinsically wrap around to the valid range, the solution
space can also be viewed as a periodically expanded space, such that
the validity constraint can be relaxed, shown in Fig. 4. This feature is
leveraged in our optimization algorithm in later sections. The above
analysis on phase domain characteristics casts both theoretical and
practical difficulty on possible co-optimization between the weight
matrix and the phase domain, which provides a strong motivation for
us to design an efficient on-chip learning method directly in the phase
space.

B. On-Chip Learning with Zeroth-Order Gradient Estimation

As shown in Fig. 2, an ONN consists of cascaded MZIs configured
with external controls. We denote all programmable MZI phases as
Φ. During ONN on-chip training, the final objective function L is
optimized based on the following gradient descent formulation,

Φ← Φ− α ∇̂ΦL, (7)

where ∇̂ΦL is the zeroth-order estimation whose expectation approx-
imates the true gradient ∇ΦL with an error bound shown in Eq.(5).
Similar to Eq.(6), the stochastic zeroth-order gradient can be evaluated
on a mini-batch as,

∇̂ΦL =
1

2σ2|S|

|S|∑
i=0

(
L(xi;Φ + ∆Φi)− L(xi;Φ−∆Φi)

)
∆Φi, (8)

where xi is one example in a mini-batch S; ∆Φi is a random high-
dimensional perturbation sampled from a multivariate Gaussian distri-
bution N (0, σ2). However, the optimization performance of stochastic
gradient descent based methods highly depends on the accuracy of
gradient estimation [15]. High variance in gradient estimation could
generally lead to a slow convergence rate and degraded solution
optimality. In this section, we will focus on the adopted techniques
and theoretical analysis to improve ONN on-chip training efficiency
and accuracy by reducing the computational and sampling complexity
as well as minimizing the gradient estimation error.

1) On-Chip Learning Efficiency Improvement: High efficiency is
one of the major targets when performing ONN on-chip training. To
efficiently leverage the ultra-fast ONN hardware platform to estimate
the zeroth-order gradient, we propose to use a parallel mini-batch
based asymmetric gradient estimator as follows,

LS(x;Φ) =
1

|S|

|S|−1∑
i=0

L(xi;Φ),

∇̂ΦL =
1

σ2

(
LS(x;Φ + ∆Φ)− LS(x;Φ)

)
∆Φ,

(9)

where LS(·) averages the loss over a mini-batch. Two reasons account
for the superior efficiency of the proposed estimator. First, a sample-
efficient asymmetric estimator replaces its symmetric counterpart

Eq. (8) [16] to achieve fewer function queries. Second, this estimation
is performed in parallel with a fixed perturbation ∆Φ used for all
examples within a mini-batch S. Thus, this method is at least |S|
times more efficient than the single-example based method (Eq. (8)).
Specifically, it eliminates expensive averaging operations over |S|
length-d gradient samples, while only a cheap averaging operation
on scalar loss functions is required. Moreover, our method shares
the same ∆Φ in a mini-batch, leading to |S| times fewer Gaussian
variable samples than its single-example based counterpart.

From the perspective of hardware implementation, this parallel
gradient estimation can be achieved by a readily available wavelength-
division multiplexing (WDM) technique that enables fully parallel
optical signal processing [17], [18]. As shown in Fig. 2, a mini-batch
of input data, e.g., 16 or 32, can be encoded into parallel optical
signals with k = |S| different wavelengths and then input into the
ONN chip through the same waveguides. Different output wavelengths
can be filtered and separated by corresponding WDM de-multiplexer,
and finally detected by photodiode arrays in the end.

Gradient estimation based on Eq. (9) costs only two function
queries, thus can lead to convergence issues due to a large variance,
especially with a larger dimension d. In the following section, we will
focus on variance analysis and reduction techniques.

2) On-Chip Learning Accuracy Improvement: To reduce the gra-
dient estimation variance, we adopt its sample average with Q + 1
function queries as follows,

∇̂ΦL =
1

Qσ2

Q−1∑
q=0

(
LS(x;Φ + ∆Φq)− LS(x;Φ)

)
∆Φq , (10)

where the sampling factor Q is the number of independent perturba-
tions used to calculate the sample average of gradient estimation.

We show the variance bound of this parallel mini-batch based asym-
metric zeroth-order gradient estimator. First, a standard assumption of
stochastic gradient descent is given on the upper bound of the variance
of the stochastic gradient on a mini-batch [16]. If the original function
L is β-smooth, we can assume

ES [||∇ΦLS −∇ΦL||2] ≤ σ2
s . (11)

Based on the above assumption, the variance upper bound of stochastic
zeroth-order gradient estimator [16] is derived as,

ES,∆Φ[||∇̂ΦL −∇ΦLσ ||2] ≤ O
(σ2β2d3

Q
+

σ2
sd

|S|Q
+
||∇ΦL||2d

Q

)
.

(12)

The above theoretical conclusion implies that increasing the sam-
pling factor Q can effectively minimize the gradient estimation



(a) (b)
Fig. 3: (a) Training curve with different sampling factor Q; (b) training
curve with different sampling variances σ. A 3-layer ONN with
configuration of 8-16-16-4 is used, where 16 represents 16 neurons at
that hidden layer.

Fig. 4: Optimization trajectory with the proposed on-chip training
algorithm in the relaxed, periodic phase space.

variance as illustrated in Fig. 3a. Besides, a smaller sampling variance
σ theoretically reduces the first term of the variance upper bound,
but it is not sensitive within a wide range as observed in Fig. 3b.
Hence, during ONN on-chip training, the sampling factor, and mini-
batch size are major tunable hyperparameters that can achieve a trade-
off between gradient estimation error and function query complexity
under certain ONN forward budget.

This zeroth-order gradient estimation based method quickly ex-
plores in the phase space till a roughly converged solution, as shown
in Fig. 4, but it may still have some accuracy degradation due to
stochastic gradient sampling error ( Eq.(12)). If more function queries
are allowed to recover the accuracy loss, we propose to extend this
algorithm with SparseTune, a light-weight fine-tuning procedure
based on random coordinate-wise phase tuning. The complete two-
stage on-chip learning algorithm is described in Alg. 1. At this
second-stage SparseTune, a randomly selected subset of phases
{φi}Mi=1 with cardinality M are sequentially tuned for each individual
coordinate, shown in the second part of optimization trajectory in
Fig. 4. This sparse tuning costs more function queries per iteration
than the first stage as M > Q, but it is overall more efficient than
brute-force training as M � d and Tf � T . It is effective as it
leverages the sparsity assumption in the parameter space [19] for
variance reduction, thus can boost the optimization performance with
less expensive parameter sweeping.

IV. ROBUST ONN LEARNING WITH in situ THERMAL VARIATION

As a high-performance analog neuromorphic platform, ONN in-
evitably encounters robustness issues that could lead to possible
accuracy degradation, where thermal cross-talk is among one of the
most critical concerns [1], [9]. In this section, we will justify the
robustness advantages of our on-chip learning method over traditional
software training with thermal cross-talk.

Thermo-optic phase shifters are widely used to configure the MZI
arrays on the ONN chip. Cross-talk exists among nearby devices, e.g.,
between two phase shifters or between phase shifters and waveguides,
by influencing their relative refractive index n, which is difficult to

Algorithm 1 ONN On-Chip Training With Zeroth-Order Optimization

Input: ONN forward function L(·), initial MZI phases Φ0, training
dataset X, initial learning rate α0, total iterations T , starting iteration
for SparseTune Tf , cardinality of finetuned phases M , and initial
tuning step size δφ0;

Output: Converged phases ΦT−1;
1: for t← 0 · · ·Tf − 1 do . First stage training
2: LS(xt;Φt), xt ∼ X . ONN forward on a mini-batch
3: {∆Φt0, · · · ,∆ΦtQ−1} ∼ N (0, (σt)2Gt) . Sample ∆Φ

4: ∇̂ΦtL = 1
Q(σt)2

∑Q−1
q=0

(
LS(xt;Φt + ∆Φtq)− LS(x

t;Φt)
)
∆Φtq

5: Φ̂t ← Φt − αt∇̂ΦtL . Phase updating
6: αt+1 = Update(αt) . Learning rate decay
7: for t← Tf · · ·T − 1 do . Second stage sparse tuning
8: Randomly sample a mini-batch xt from X
9: Randomly select a set of phases {φi}Mi=1 ⊆ Φt

10: for each phase φi ∈ {φi}Mi=1 do
11: if L(xt;φti + δφt) < L(xt;φti) then
12: φt+1

i ← φti + δφt

13: else
14: φt+1

i ← φti − δφt

15: δφt+1 = Update(δφt)

(a) (b)
Fig. 5: Thermal variation simulation for a 9×9 MZI triangular array
based on Poisson’s equation. (a) Initial heat source distribution; (b)
steady normalized temperature distribution.

accurately model in an efficient way for several reasons. First, due
to heat propagation, the temperature at any point on the chip is fully
correlated with others, which can be ideally modeled with a Poisson’s
equation. Solving the steady temperature distribution of the whole
chip will be time-consuming during training. Second, The heat source
is not a single point but has a heat distribution along the physical
dimensions of the device, which means different segments of the
phase shifter will have different values of refractive index n under
different temperatures. Hence the phase shift induced is given by the
integral along the device dimensions. Third, the thermal impact from
the phase shifters to neighboring waveguides is more complicated,
as waveguides have different shapes, e.g., line, curves, circles. An
accurate cross-talk model requires prohibitive computation that is
rather challenging to consider as the chip scales up. In the present
of thermal cross-talk T (·), ONN on-chip training can be formulated
as optimizing in the projected phase space,

Φ∗ = argmin
Φ

L(x; T (Φ)), (13)

To resolve this robustness issue when optimizing Eq. (13), thermal
variation can be modeled during ONN training. Back-propagation
based software training may encounter severe efficiency and effec-
tiveness issues, as shown in Fig. 6a. Modeling thermal variations
during software training is time-consuming and inaccurate. It requires
computationally-intensive SVD, unitary parametrization UP , and its
inverse reconstruction UP−1 to switch between the weight matrix
domain W and the corresponding phase domain Φ. To accurately
obtain the projected phases Φn = T (Φ), thermal variation with cross-
talk simulation needs to be injected in each training iteration. This



(a) (b)
Fig. 6: (a) Comparison between software training and on-chip learning.
UP , TS, UP−1 represent unitary parametrization, thermal simula-
tion, and inverse unitary reconstruction, respectively. (b) Runtime cost
of unitary parametrization and inverse reconstruction.

whole procedure suffers from inefficiency and poor scalability given
the high computational cost and runtime cost of unitary parametriza-
tion (Eq. (2)) and accurate thermal simulation. Our proposed on-chip
learning method can inherently avoid those expensive domain transfer
and inaccurate variation modeling via phase domain optimization with
in situ thermal variation. Thus it can improve the ONN robustness with
much higher learning efficiency than software training.

V. EXPERIMENTAL RESULTS

To evaluate the effectiveness and efficiency of our proposed ONN
on-chip learning algorithm, we compare inference accuracy and the
number of ONN forward propagation with 1) brute-force phase tuning
(BFT) [1], [11] algorithm, 2) particle swarm optimization (PSO)
based on-chip training [13] algorithm, 3) our proposed algorithm
with stochastic zeroth-order gradient estimation (FLOPS), and 4) our
proposed algorithm with a second-stage sparse tuning (FLOPS+).
Experiments are conducted on a Vowel Recognition dataset [20] to
perform vowel phoneme classification. We implement all methods in
PyTorch with an NVIDIA GTX 1080 GPU and an Intel Core i7-3770
CPU. We use two 3-layer ONN configurations in our experiments:
1) 8-16-16-4 and 2) 10-24-24-6, where 10 and 24 represent the input
length and the number of neurons, respectively. We adopt a learning
rate α=2 with exponential decaying rate of 0.985, a sampling standard
deviation σ=0.002, and a mini-batch size |S|=32, which is technically
realizable by modern WDM techniques.

A. ONN Training Method Comparison

In the comparison experiments, the brute-force on-chip phase tuning
method (BFT) [1], [11] sequentially perturbs |Φ| = d phases with a
decaying perturbation δφ, compare the perturbed loss function with
the original one, and update each phase according to,

φi ←

{
φi + δφ, if L(x, φi + δφ) < L(x, φi)

φi − δφ, if L(x, φi + δφ) ≥ L(x, φi)
(14)

The particle swarm optimization (PSO) initializes a population of
P phase solutions {Φp}Pp=1, and iteratively updates the population
towards a randomly mixed direction between their globally best-
performing solution and individually best solution after P function
evaluations. Note that as mentioned in Section I, the adjoint variable
method (AVM) [12] is not compared because it requires expensive
in situ light intensity measurement in the device-level such that it is
technically intractable to realize on larger systems.

Based on the training curve comparison in Fig. 7, we notice a slow
and unstable convergence for BFT method. We cut off the plot after
certain function queries for clear demonstration, while BFT actually

(a) (b)
Fig. 7: (a), (b) are training curve comparisons among different methods
with ONN configurations of 8-16-16-4, and 10-24-24-6 respectively.
BFT is trained for 50 epochs, and other methods are trained for 200
epochs.

takes an extremely long time to converge. For PSO-based ONN on-
chip training [13], we adopt an experimentally optimal set of hyper-
parameters for fair comparison, where initial velocity is within [-
2,2], inertia weight w=0.5, individual cognitive constant c1=0.5, and
social constant c2=1. PSO stagnates at a poor saddle point in an
early stage, which is hard to overcome since only zeroth-order oracle
information is used [19]. Our proposed algorithm (FLOPS) quickly
explores the phase space along the estimated zeroth-order gradient
directions towards a relatively low training loss with cheap function
query complexity. Extended with sparse tuning procedure, shown in
Fig. 7b, FLOPS+ takes longer to converge but effectively boosts the
ONN learning performance, such that the accuracy gap is minimized
compared to the best result.

Besides inference accuracy, we give theoretical analysis and practi-
cal measurements for the learning efficiency of the above four meth-
ods. BFT sequentially sweeps over all phases Φ ∈ Rd, leading a query
complexity of O(Tλd), where λ is the average number of function
query at each tuning step. Assuming either case in Eq.(14) happens
with the same probability, we estimate λ as 3/2. PSO method performs
practically well on small-scale ONN training (<100 MZIs) [13], but a
population-related complexityO(TP ) makes it query-inefficient when
optimizing a larger number of phases. FLOPS is sample-efficient with
a query complexity of O(TQ), where Q is practically much lower
than either P or λd. FLOPS+ offers a controllable approach to trade
off between efficiency and performance. It costs more ONN forward
as O((T − Tf )Q + TfλM), while better solution optimality can be
obtained, and the training efficiency advantages still hold. To validate
the potential and scalability of FLOPS, we estimate the runtime of
on-chip training methods and BP-based software training with a 3-
layer example ONN configuration of 200-500-500-10. As analyzed in
Section. IV, BP-based software training suffers from computational
inefficiency due to expensive domain transfer between W and Φ. The
runtime breakdown for each software training iteration is estimated as,

tsw ≈ tfp + tsvd + tup + trec + tbp

≈ 70ms+ 200ms+ 20s+ 10s+ 20ms ≈ 30s
(15)

where forward tfp, backward tbp, and SVD tsvd take around 300
ms. Unitary parametrization tup and its inverse reconstruction trec
takes the majority of the runtime. Figure. 6b shows that tup and trec
grow rapidly as the matrix size scales up. This runtime cost could be
unaffordable once thermal simulation is added. For the same ONN
configuration, the runtime estimation of on-chip training is [21],

toc ≈ tprog + topt + tpd + tad + titer

≈ 10µs+ 1000ps+ 20ps+ 1ns+ 1ms ≈ 1ms,
(16)

where tprog is the thermal constant time for programming MZIs,
topt is the propagation latency of optics through the 3-layer MZI



TABLE I: On-chip training methods comparison in terms of inference
accuracy and number of ONN forward on a Vowel Recognition dataset.

ONN Setup Methods Test Accuracy #ONN Forward

8-16-16-4(|Φ| = 448)
BFT [1], [11] 99.08% 268.8 K (4.1)
PSO-150 [13] 56.89% 256.0 K (3.9)
FLOPS-40 99.08% 65.6 K (1.0)

10-24-24-6(|Φ| = 960)

BFT [1], [11] 99.38% 864.0 K (3.9)
PSO-300 [13] 43.83% 720.0 K (3.3)
FLOPS-60 95.06% 219.6 K (1.0)
FLOPS+-60 98.17% 405.1 K (1.8)

PSO-150 represents a population of 150; FLOPS-40 sets Q to 40.
FLOPS+-40, FLOPS+-60 are extended with SparseTune with
M=200 and 400 respectively. Normalized number of ONN forward
is also shown for efficiency comparison.

(a) (b)
Fig. 8: (a), (b) are accuracy comparison under thermal cross-talk with
ONN configurations of 8-16-16-4 and 10-24-24-6 respectively. The
gap between Software (Ideal) and Software (Crosstalk) shows the
accuracy drop caused by thermal cross-talk.

arrays, tpd is the photo-detection time with WDM de-multiplexing,
tad accounts for the analog-to-digital conversion time, and titer adds
the computation overhead for gradient calculation and phase updates.
Given the sampling factor Q � 30s

1ms
, our proposed ONN on-chip

learning method potentially benefits from order of magnitude learning
efficiency improvement over the traditional software-based training.

B. On-chip Training under in situ Thermal Variation

To demonstrate the robustness of our proposed learning method
in the presence of device thermal variation, we evaluate the impact
of thermal cross-talk among MZIs on the inference accuracy. Given
that the phase shift is proportional to the temperature ∆Φ∝∆T [21],
[22], all phase shifts will increase since thermal cross-talk slows down
the heat dissipation. We show the inference accuracy under thermal
cross-talk for different methods in Fig. 8.

The pure software learning method achieves high accuracy under
variation-free case (∼98%), but degrades by ∼5% when the thermal
variation is considered. The brute-force phase tuning (BFT) method
demonstrates higher inference accuracy than pure software training
but still suffers from inefficiency due to a considerable amount of
function queries. Particle swarm optimization (PSO) generally shows
unsatisfying robustness against thermal variation, leading to less than
50% accuracy for both ONN setups. Our proposed method FLOPS
naturally considers the thermal non-ideality during on-chip learning
and demonstrates better robustness and better function query efficiency
than previous works. After fast exploration of FLOPS, an extra
SparseTune is considered to trade off between efficiency and
performance. At the cost of more function queries, our two-stage
zeroth-order optimization method FLOPS+ achieves the best accuracy
and robustness under thermal cross-talk while still more efficient than
previous methods.

VI. CONCLUSION

In this work, we propose a solution to enable efficient and robust
ONN on-chip learning based on stochastic optimization with zeroth-

order gradient estimation. A parallel mini-batch based asymmet-
ric gradient estimator FLOPS is adopted to leverage the ultra-fast
parallel photonic chips to improve training efficiency as well as
learning performance. Extended with a light-weight sparse phase
tuning SparseTune, a two-stage FLOPS+ is introduced to further
boost the accuracy under thermal variation while still maintaining
better efficiency than previous works. We give a theoretical analysis
of the variance bound of FLOPS, function query complexity, and
runtime comparison with other methods. Experimental results on a
Vowel Recognition dataset with two ONN setups are demonstrated.
Compared with the brute-force method and PSO-based method, our
proposed framework FLOPS provides a 3∼4× more efficient on-chip
learning protocol with better inference accuracy and robustness to
thermal variation.
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