
Towards Area-Efficient Optical Neural Networks:
An FFT-based Architecture

Jiaqi Gu1*, Zheng Zhao1, Chenghao Feng1, Mingjie Liu1, Ray T. Chen1, and David Z. Pan1†

1ECE Department, The University of Texas at Austin
*jqgu@utexas.edu; †dpan@ece.utexas.edu

Abstract—As a promising neuromorphic framework, the optical neural
network (ONN) demonstrates ultra-high inference speed with low energy
consumption. However, the previous ONN architectures have high area
overhead which limits their practicality. In this paper, we propose an
area-efficient ONN architecture based on structured neural networks,
leveraging optical fast Fourier transform for efficient computation. A
two-phase software training flow with structured pruning is proposed
to further reduce the optical component utilization. Experimental re-
sults demonstrate that the proposed architecture can achieve 2.2∼3.7×
area cost improvement compared with the previous singular value
decomposition-based architecture with comparable inference accuracy.

I. INTRODUCTION

Deep neural networks (DNNs) have demonstrated superior perfor-
mance in a variety of intelligent tasks, for example convolutional neu-
ral networks on image classification [1] and recurrent neural networks
on language translation [2]. Multi-layer perceptrons (MLPs) are
among the most fundamental components in modern DNNs, which
are typically used as regression layers, classifiers, embedding layers,
and attention layers, etc. However, MLPs require computationally-
expensive matrix-vector multiplication, which becomes challenging
for traditional von Neumann computing schemes owing to speed
and energy inefficiency. To resolve this issue, significant efforts
have been made on hardware design of neuromorphic computing
frameworks to improve the computational speed of neural networks,
such as electronic architectures [3], [4], [5] and photonic architectures
[6], [7]. Among extensive neuromorphic computing systems, optical
neural networks (ONNs) distinguish themselves by ultra-high band-
width, ultra-low latency, and near-zero energy consumption. Even
though ONNs are currently not competitive in terms of area cost,
they still offer a promising alternative approach to microelectronic
implementations given the above advantages.

Recently, several works demonstrated that MLP inference can be
efficiently performed at the speed of light with optical components,
e.g., spike processing [6] and reservoir computing [8]. They claimed
a photodetection rate over 100 GHz in photonic networks, with near-
zero energy consumption if passive photonic components are used
[9]. Based on matrix singular value decomposition (SVD) and unitary
matrix parametrization [10], [11], Shen et al. [12] designed and
fabricated a fully optical neural network that achieves an MLP with
Mach-zehnder interferometer (MZI) arrays. Once the weight matrices
in the MLP are trained and decomposed, thermo-optic phase shifters
on the arms of MZIs can be set up accordingly. Since the weight
matrices are fixed after training, this fully optical neural network can
be completely passive, thus minimizes the total energy consumption.
However, this SVD-based architecture is limited by high photonic
component utilization and area cost. Considering a single fully-
connected layer with an m×n weight matrix, the SVD-based ONN
architecture requires O(m2 +n2) MZIs for implementation. Another
work [13] proposed a slimmed ONN architecture (TΣU) based on
the previous one [12], which substitutes one of the unitary blocks
with a sparse tree network. However, its area cost improvement
is limited. Therefore, this high hardware complexity of the SVD-

based ONN architecture has become the bottleneck of its hardware
implementation.

In addition to hardware implementation, recent advances in neural
architecture design and network compression techniques have shown
significant reduction in computational cost. For example, structured
neural networks (SNNs) [14] were proposed to significantly reduce
computational complexity and thus, become amenable to hardware.
Besides, network pruning offers another powerful approach to slim-
ming down neural networks by cutting off insignificant neuron
connections. While non-structured pruning [15] produces random
neuron sparsity, group sparsity regularization [16] and structured
pruning [4] can lead to better network regularity and hardware
efficiency. However, readily-available pruning techniques are rather
challenging to be applied to the SVD-based architecture due to some
issues, such as accuracy degradation and hardware irregularity. The
gap between hardware-aware pruning and the SVD-based architecture
gives another motivation for a pruning-friendly ONN architecture.

In this paper, we propose a new ONN architecture that improves
area efficiency over previous ONN architectures. It leverages optical
fast Fourier transform (OFFT) and its inverse (OIFFT) to implement
structured neural networks, achieving lower optical component uti-
lization. It also enables the application of structured pruning given
its architectural regularity. The proposed architecture partitions the
weight matrices into block-circulant matrices [17] and efficiently
performs circulant matrix multiplication through OFFT/OIFFT. We
also adopt a two-phase software training flow with structured pruning
to further reduce photonic component utilization while maintaining
comparable inference accuracy to previous ONN architectures. The
main contributions of this work are as follows:

• We propose a novel, area-efficient optical neural network archi-
tecture with OFFT/OIFFT.

• We exploit a two-phase software training flow with structured
pruning to learn hardware-friendly sparse neural networks that
directly eliminate part of OFFT/OIFFT modules for further area
efficiency improvement.

• We experimentally show that pruning is challenging to be
applied to previous ONN architectures due to accuracy loss and
retrainability issues.

• We experimentally demonstrate that our proposed architecture
can lead to an area saving of 2.2∼3.7× compared with the pre-
vious SVD-based ONN architecture, with negligible inference
accuracy loss.

The remainder of this paper is organized as follows. Section II
introduces the background knowledge for our proposed architecture.
Section III demonstrates the challenges to apply pruning to SVD-
based architectures. Section IV presents details about the proposed
architecture and software pruning flow. Section V analytically com-
pares our hardware utilization with the SVD-based architecture.
Section VI reports the experimental results on MNIST dataset [18]
for our proposed architecture, followed by the conclusion in Section
VII.

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE

II. PRELIMINARIES

In this section, we introduce the background knowledge for our
proposed architecture. We discuss principles of cirulant matrix rep-
resentation and its fast computation algorithms in Section II-A and
illustrate structured pruning techniques with Group Lasso regulariza-
tion in Section II-B.

A. FFT-based Circulant Matrix Computation

Unlike the SVD-based ONNs which focus on classical MLPs,
our proposed architecture are based on structured neural networks
(SNNs) with circulant matrix representation. SNNs are a class
of neural networks that are specially designed for computational
complexity reduction, whose weight matrices are regularized using
the composition of structured sub-matrices [14]. Among all struc-
tured matrices, circulant matrices are often preferred in recent SNN
designs. As an example, we show an n × n circulant matrix W as
follows,

w0 wn−1 · · · w1

w1 w0 · · · w2

...
...

. . .
...

wn−1 wn−2 · · · w0

 .
The first column vector w = [w0, w1, . . . , wn−1]T represents
all independent parameters in W , and other columns are just its
circulation.

According to [17], circulant matrix-vector multiplication can be
efficiently calculated through fast Fourier transform. Specifically,
given an n×n circulant matrix W and a length-n vector x, y = Wx
can be efficiently performed with O(n logn) complexity as,

y = F−1(F(w)�F(x)
)
, (1)

where F(·) represents n-point real-to-complex fast Fourier transform
(FFT), F−1(·) represents its inverse (IFFT), and � represents com-
plex vector element-wise multiplication.

SNNs benefit from high computational efficiency while maintain-
ing comparable model expressivity to classical NNs. Theoretical
analysis [19] shows that SNNs can approximate arbitrary continuous
functions with arbitrary accuracy given enough parameters, and are
also capable of achieving the identical error bound to that of classical
NNs. Therefore, based on SNNs with circulant matrix representation,
the proposed architecture features low computational complexity and
comparable model expressivity.

B. Structured Pruning with Group Lasso Penalty

The proposed ONN architecture enables the application of struc-
tured pruning to further save optical components, while maintaining
accuracy and structural regularity. Structured pruning trims the neu-
ron connections in NNs to mitigate computational complexity. Unlike
`1 or `2 norm regularization, which produces arbitrarily-appearing
zero elements, structured pruning with Group Lasso regularization
[4], [20] leads to zero entries in groups. This coarse-grained sparsity
is more friendly to hardware implementation than non-structured
sparsity. The formulation of Group Lasso regularization term is given
as follows,

LGL =

G∑
g=0

√
1/pg ‖βg‖2 , (2)

where G is the total number of parameter groups, βg is the parameter
vector in the g-th group, ‖·‖2 represents `2 norm, pg represents the
vector length of βg , which accounts for the varying group sizes.
Intuitively, the `2 norm penalty ‖βg‖2 encourages all elements in the
g-th group to converge to 0, and the group-wise summation operation
is equivalent to group-level `1 norm regularization, which contributes
to the coarse-grained sparsity. Leveraging the structured pruning

Fig. 1: Correlation between phase sparsity and inference accuracy with
different network configurations based on MNIST [18] dataset.

together with Group Lasso regularization, our proposed architecture
can save even more photonic components.

III. CHALLENGES IN PRUNING SVD-BASED ARCHITECTURE

In this section, we demonstrate that the network pruning is
experimentally challenging in the SVD-based architecture. As far as
we know, it is hard to find any pruning method that can be directly
applied to sparsifying MZI arrays.

In the SVD-based architecture, an m×n weight matrix W can be
decomposed into W = UΣV using singular value decomposition.
Unitary matrices U and V can be further parametrized [10] into
the product of planar rotation matrices U = D · Π2

i=mΠi−1
j=1Rij ,

where D is a diagonal matrix and each unitary rotation Rij can
be represented by an angle or phase φ. Each unitary rotation matrix
with phase φ can be implemented with an MZI. We denote all phases
after parametrization as Φ. Phases with particular values, i.e., 0, π/2,
π, and −π/2, can physically eliminate the use of the corresponding
MZIs. We refer to these particular phases as sparse phases. One of the
methods to perform pruning is to train a sparse weight matrix, but the
sparsity can barely maintain after decomposition and parametrization.
Another straight-forward method is post-training phase pruning. It
directly clamps sparse phases but could cause significant accuracy
degradation due to its unretrainability.

We experimentally illustrate the correlation between inference
accuracy and phase sparsity. Concretely, we clamp Φ with a thresh-
old ε to get Φ̂. Then we evaluate the inference accuracy with
reconstructed weight matrix Ŵ . Figure 1 shows that, in different
network configurations, on average no more than 15% phases can be
pruned to achieve negligible (∼ 0.5%) absolute accuracy degradation.
With over 20% phases being pruned, its model expressivity will
be severely harmed with significant accuracy loss (> 1%). This
accuracy loss partially attributes to the difficulty of retraining the
weight matrices while maintaining phase sparsity. Another challenge
derives from the hardware irregularity caused by non-structured phase
pruning, which further limits the area improvement it can achieve.
The above limitations also apply to the TΣU-based architecture [13]
as it has a similar architectural design to the SVD-based one. This
unsatisfying incompatibility between previous ONN architectures and
pruning techniques offers a strong motivation for us to propose a new
architecture to better leverage pruning techniques.

IV. ARCHITECTURE AND STRUCTURED PRUNING

In this section, we will discuss details about the proposed archi-
tecture and pruning method. In the first part, we illustrate five stages
of our proposed architecture. In the second part, we focus on the
two-phase software training flow with structured pruning.

A. Proposed Architecture

Based on structured neural networks, our proposed architecture
implements a structured version of MLPs with circulant matrix

Fig. 2: Schematic diagram of a single layer of the proposed
architecture. All adjacent phase shifters on the same waveguide are
already merged into one phase shifter.

Fig. 3: Schematics of (a) 4-point OFFT, (b) 4-point OIFFT, and (c)
2× 2 coupler. Note that phase shifters shown above are not merged for
structural completeness consideration.

representation. A single layer in the proposed architecture per-
forms linear transformation via block-circulant matrix multiplication
y = Wx. Consider an n-input, m-output layer, the weight matrix
W ∈ Rm×n is partitioned into p × q sub-matrices, each being a
k × k circulant matrix. To perform tiled matrix multiplication, the
input x is also partitioned into q segments x = (x0,x1, · · · ,xq−1).
Thus y = Wx can be performed in a tiled way,

y =

y0

y1

...
yp−1

 =

∑q−1
j=0 W0jxj∑q−1
j=0 W1jxj

...∑q−1
j=0 Wp−1jxj

 . (3)

The ith segment yi =
∑q−1
j=0 Wijxj is the accumulation of q

independent circulant matrix multiplications. Each Wijxj can be
efficiently calculated using the fast computation algorithm mentioned
in Eq. (1). Based on the aforementioned equations, we realize block-
circulant matrix multiplication y = Wx in five stages: 1) Splitter
tree (ST) stage to split input optical signals for reuse; 2) OFFT
stage to calculate F(x); 3) element-wise multiplication (EM) stage to
calculate F(wij)�F(xj) as described in Eq. (1); 4) OIFFT stage to
calculate F−1(·); 5) combiner tree (CT) stage to accumulate partial
multiplications to form the final results. F(wij) can be precomputed
and encoded into optical components, thus there is no extra stage
to physically perform it. The schematic diagram of our proposed
architecture is shown in Fig. 2. Details of the above five stages will
be discussed in the rest of this section.

1) OFFT/OIFFT Stages: To better model the optical components
used to implement the OFFT/OIFFT stages, we introduce a unitary

Fig. 4: Complex number multiplication realized by cascaded attenua-
tor/amplifier and phase shifter.

FFT as,

Xk =
1
√
N

N−1∑
n=0

xne
−i 2πkn

N k = 0, 1, · · · , N − 1. (4)

We denote this special operation as F̂(·) and its inverse as F̂−1(·),
to distinguish from the original FFT/IFFT operations. Equivalently,
we re-write the circulant matrix multiplication with the above new
operations,

y = F̂−1(F(w)� F̂(x)
)
. (5)

This unitary FFT operation can be realized with optical components.
We first give a simple example for the optical implementation of a
2-point unitary FFT. As shown in Eq. (6), the transformation matrix
of a 2-point unitary FFT can be decomposed into three transform
matrices. They can be directly mapped to a 3-dB directional coupler
with two −π/2 phase shifters on its lower input/output ports. For
brevity, we refer to this cascaded structure as a 2× 2 coupler, which
is shown in Fig. 3(c).(

out1
out2

)
=

1
√
2

(
in1 + in2

in1 − in2

)
=

(
1 0

0 −j

)
︸ ︷︷ ︸

output phase shifter

1
√
2

(
1 j

j 1

)
︸ ︷︷ ︸
directional coupler

(
1 0

0 −j

)
︸ ︷︷ ︸

input phase shifter

(
in1

in2

)
(6)

Based on 2 × 2 couplers and phase shifters, larger-sized
OFFT/OIFFT can be constructed with a butterfly structure. The
schematics of a simple 4-point OFFT and OIFFT are shown in
Fig. 3(a) and Fig. 3(b). Extra 0-degree phase shifters are inserted
for phase tuning purpose. This butterfly-structured OFFT may have
scalability issues because the number of waveguide crossings (CR)
will increase rapidly when the number of point gets larger. However,
this unsatisfying scalability will not limit our proposed architecture
for two reasons. First, only small values of k, e.g., 2, 4, 8, will
be adopted to balance hardware efficiency and model expressivity.
Second, input and output sequences can be reordered to avoid
unnecessary waveguide crossings, as shown in Fig. 3.

2) EM Stage: In the EM stage, complex vector element-wise
multiplications will be performed in the Fourier domain as I1ejφ1 ·
I2e

jφ2 = I1 · I2ej(φ1+φ2), where I and φ are intensity and phase of
Fourier light signals respectively. Leveraging the polarization of light,
we use optical attenuators (AT) or amplification materials/optical on-
chip amplifiers to realize modulus multiplication I1 · I2 and phase
shifters for argument addition ej(φ1+φ2), which is shown in Fig. 4.

3) ST/CT Stage: We introduce tree-structured splitter/combiner
networks to realize input signal splitting and output signal accumu-
lation, respectively. To reuse input segments xj in multiple blocks,
optical splitters (SP) are used to split optical signals. Similarly, to
accumulate partial multiplication results, i.e., yi =

∑q−1
j=0 Wijxj , we

adopt optical combiners (CB) for signal addition. Given that optical
splitters can be realized by using combiners in an inversed direction,
we will focus on the combiner tree structure for brevity. The transfer
function of an N -to-1 optical combiner is,

out =
1
√
N

N−1∑
l=0

inl. (7)

Fig. 5: Comparison between direct combining (left) and combiner tree
(right) with 4 length-2 vectors accumulated.

Accumulating q length-k vectors by simply using k q-to-1 combiners
introduces a huge number of waveguide crossings which may cause
intractable implementation difficulty. Also, combiners with more than
two ports are still challenging for manufacturing. In order to alleviate
this problem, we adopt a tree-structured combiner network, shown in
Fig. 5. This combiner tree consists of k(q−1) combiners and reduces
the number of waveguide crossings to k(k−1)(q−1)/2. Given that
combiners will cause optical intensity loss by a factor of 1/

√
N as

shown in Eq. (7), we assume there will be optical amplifiers added
to the end to compensate this loss.

B. Two-phase Training Flow with Structured Pruning

Structured pruning can be applied to our proposed architecture
during training given its architectural regularity. As described in Alg.
1, we exploit a two-phase software training flow with structured
pruning to train a more compact NN model with fewer redundancies
and negligible accuracy loss. Lines 2-4 perform the first initial
training phase with Group Lasso regularization term added to our
loss function.

L = Lbase + λ LGL, (8)

where Lbase is the basic loss function, e.g., cross-entropy loss if
targeted at classification tasks, and λ is a hyper-parameter used
to weigh the regularization term LGL given in Eq. 2. The initial
training phase explores a good local minimum in the full parameter
space to get rough convergence. This is designed to provide a good
initial model for the subsequent pruning. Line 5 enters the structured
pruning phase. The pruning mask M is generated to mark wij whose
`2 norm falls below a threshold T . Those marked weight groups will
be forced to zero. Hence, the corresponding hardware modules can
be completely eliminated. As training and pruning are alternately
performed, the network sparsity will incrementally improve. Line 12
applies a smooth function, e.g., polynomial or Tanh, to gradually
increase pruning threshold to avoid accuracy degradation caused by
aggressive pruning.

V. THEORETICAL ANALYSIS ON PROPOSED ARCHITECTURE

In this section, we derive a theoretical estimation of hardware uti-
lization of the proposed architecture and the SVD-based architecture.
By comparing the hardware component utilization, we show that the-
oretically our proposed architecture costs fewer optical components
than the SVD-based architecture. For simplicity, we convert all area-
costly components, i.e., 2×2 couplers, MZIs, and attenuators, to 3-dB
directional couplers (DCs) and phase shifters (PSs). Specifically, one
2×2 coupler can be taken as one DC and two PSs, and one MZI can
be taken as two DCs and one PS. Since an attenuator can be achieved
by a single-input directional coupler with appropriate transfer factor,
we count one attenuator as one DC.

Given an n-input, m-output layer, the SVD-based implementation
requires m(m−1)/2+n(n−1)/2 MZIs and max(m,n) attenuators

Algorithm 1 Two-Phase Training Flow with Structured Pruning

Require: Initial parameter w0 ∈ Rp×q×k, pruning threshold T , initial
training timestep tinit, and learning rate α;

Ensure: Converged parameter wt and a pruning mask M ∈ Zp×q ;
1: M ← 1 . Initialize pruning mask to all 1
2: for t← 1, ..., tinit do . Phase 1: Initial training
3: Lt(wt−1)← Ltbase(w

t−1) + λ · LtGL(w
t−1)

4: wt ← wt−1 − α · ∇wLt(wt−1)

5: while wt not converged do . Phase 2: Structured pruning
6: for all wt−1

i,j ∈ wt−1 do
7: if ||wt−1

ij ||2 < T then
8: M [i, j]← 0 . Update pruning mask
9: ApplyDropMask(M ,wt−1)

10: Lt(wt−1)← Ltbase(w
t−1) + λ · LtGL(w

t−1)

11: wt ← wt−1 − α · ∇wLt(wt−1)

12: UpdateThreshold(T) . Smoothly increase threshold

to realize the weight matrix. Therefore, with the aforementioned
assumption, the total number of components it costs is given by,

#DCSVD = m(m− 1) + n(n− 1) + max(m,n)

#PSSVD = m(m− 1)/2 + n(n− 1)/2.
(9)

For our architecture, each k×k circulant matrix costs k attenuators
and corresponding components required by k-point OFFT/OIFFT.
The following formulation gives the number of components for a
k-point OFFT/OIFFT.

#DCOFFT(k) = 2×#DCOFFT(k/2) + k/2 =
k

2
log2 k

#PSOFFT(k) = k(log2 k + 1)
(10)

A phase shift is physically meaningful only when it is within
(−2π, 0] as phases can wrap around. Hence, multiple successive
phase shifters on the same segment of a waveguide can be merged
as one phase shifter, which can be seen when comparing Fig. 2 and
Fig. 3. Then the total number of components used in our architecture
to implement an m × n weight matrix with size-k circulant sub-
matrices is given by,

#DCOurs(k) =
m

k
×
n

k
× (2×#DCOFFT(k) + k)

=
mn

k
(log2 k + 1)

#PSOurs(k) =
m

k
×
n

k
× (2×#PSOFFT(k)− k)

=
mn

k
(2 log2 k + 1).

(11)

In practical cases, k will be set to small values, such as 2, 4, and
8. Given arbitrary values of m and n, the proposed architecture
costs theoretically fewer optical components than the SVD-based
architecture.

VI. EXPERIMENTAL RESULTS

We conduct numerical simulations for functionality validation
and evaluate our proposed architecture on the hand-written digit
recognition dataset (MNIST) [18] with various network configura-
tions. Quantitative evaluation shows that our proposed architecture
outperforms the SVD-based and TΣU-based ONN architectures in
terms of area cost without any accuracy degradation.

A. Simulation Validation

To validate the functionality of our proposed architecture, we
conduct optical simulations on a 4×4 circulant matrix-vector multi-
plication module using Lumerical INTERCONNECT tools. First we
encode a 4×4 identity weight matrix into our architecture, and input
4 parallel optical signals to validate its functionality. For brevity, we
plot several different representative cases in Fig. 6a. It shows that
our designed architecture can correctly realize identity projection.
Further, we randomly generate a length-4 real-valued weight vector

TABLE I: Comparison of inference accuracy and hardware utilization on MNIST dataset with different configurations.

Network Configurations Sparsity #Parameter Accuracy #DC #PS Area (cm2)

Model 1

SVD [12]: (28×28)-400-10 0.00 318 K 98.49% 934 K 467 K 20.62
TΣU [13]: (28×28)-400-10 0.00 318 K 98.49% 777 K 388 K 17.15
Ours w/o Prune: (28×28)-1024(8)-10(2) 0.00 105 K 98.32% 412 K 718 K 9.33
Ours w/ Prune: (28×28)-1024(8)-10(2) 0.40 63 K 98.26% 244 K 425 K 5.53

Model 2

SVD [12]: (14×14)-70-10 0.00 14 K 96.93% 48 K 24 K 1.07
TΣU [13]: (14×14)-70-10 0.00 14 K 96.93% 44 K 22 K 0.97
Ours w/o Prune: (14×14)-256(4)-10(2) 0.00 14 K 96.93% 40 K 67 K 0.90
Ours w/ Prune: (14×14)-256(4)-10(2) 0.45 8 K 96.91% 22 K 36 K 0.49

Model 3

SVD [12]: (28×28)-400-128-10 0.00 366 K 98.58% 967 K 483 K 21.35
TΣU [13]: (28×28)-400-128-10 0.00 366 K 98.58% 794 K 396 K 17.52
Ours w/o Prune: (28×28)-1024(8)-128(4)-10(2) 0.00 134 K 98.53% 501 K 868 K 11.34
Ours w/ Prune: (28×28)-1024(8)-128(4)-10(2) 0.39 81 K 98.43% 289 K 517 K 6.77

Model 4

SVD [12]: (14×14)-160-160-10 0.00 59 K 97.67% 141 K 70 K 3.10
TΣU [13]: (14×14)-160-160-10 0.00 59 K 97.67% 91 K 45 K 2.00
Ours w/o Prune: (14×14)-256(4)-256(8)-10(2) 0.00 22 K 97.67% 73 K 123 K 1.64
Ours w/ Prune: (14×14)-256(4)-256(8)-10(2) 0.37 14 K 97.52% 47 K 79 K 1.05

For example, configuration (28×28)-1024(8)-10(2) indicates a 2-layer neural network, where the first layer has 784 input channels, 1024 output
channels with size-8 circulant matrices, and so on.

(a)

(b)

Fig. 6: (a) Simulated output intensities (crosses) and ground truth
(circles) of a 4×4 identity circulant matrix-vector multiplication. (b)
Simulated output intensities (crosses) and ground truth (circles) of a 4×4
circulant matrix-vector multiplication, with w=(0.2,-0.1,0.24,-0.15). E.g.,
(0,0,1,1) is the input signal.

TABLE II: Optical component sizes used in the area estimation.

Optical Component Length (µm) Width (µm)
3-dB Directional Coupler [12] 54.4 40.3
Thermo-optic Phase Shifter [21] 60.16 0.50
2-to-1 Optical Combiner [22] 20.00 3.65
Waveguide Crossing [23] 5.9 5.9

w = (0.2,−0.1, 0.24,−0.15) to represent a circulant matrix, and en-
code F(w) = (0.19e0j , 0.064e−2.246j , 0.69e0j , 0.064e2.246j) into
attenuators and phase shifters in the EM stage. The simulation results
in Fig. 6b show good fidelity (< 1.2% maximum relative error) to
the ground truth results.

B. Comparison Experiments

To evaluate the effectiveness and efficiency of our proposed
architecture, we conduct a comparison experiment on a machine
learning dataset MNIST [18], and compare the hardware utiliza-
tion, model expressivity among four architectures: 1) SVD-based
architecture [12]; 2) TΣU-based architecture [13]; 3) Ours without
pruning; 4) Ours with pruning. For the SVD-based ONN, we simply
train an original MLP since this architecture directly implements
matrix multiplication in the fully-connected layer. In the TΣU-based
architecture, training is performed on a sparse matrix T designed for
dimensionality matching, a diagonal matrix Σ, and a pseudo-unitary
matrix U with unitary regularization. This architecture eliminates one
of the area-cost unitary matrix and adopts a sparse-tree T to match

Fig. 7: Training curve of the proposed architecture with setup of
(28×28)-1024(8)-10(2).

dimensionality. The orthogonality constraint of U is first relaxed with
unitary regularization in the training, and satisfied by post-training
unitary projection [13].

We implement the proposed architecture with different configura-
tions in PyTorch and test the inference accuracy on a machine with
an Intel Core i9-7900X CPU and an NVIDIA TitanXp GPU. We
set λ to 0.3 for the Group Lasso regularization term, initialize all
trainable weights with a Kaiming-Normal initializer [24], adopt the
Adam optimizer [25] with initial learning rate=1× 10−3 and a step-
wise exponential-decay learning rate schedule with decay rate=0.9.
We use the ideal rectified linear units (ReLU) activation function as
nonlinearity. All NN models are trained for 40 epochs with mini-
batch size of 32 till fully converged. Figure 7 plots the test accuracy
and sparsity curves as training proceeds. The first 5 epochs are the
initial training phase. After that, the model has roughly converged.
In the subsequent structured pruning phase, we apply a step-wise
function to smoothly increase the threshold T . We can see that every
time sparsity increases, the test accuracy decreases accordingly and
then fully recovers during the next training epoch. This alternate
pruning and re-training mechanism incrementally improves sparsity
while minimizing accuracy loss.

For fair comparison, all architectures are trained with the same
hyper-parameters and have similar test accuracy in each experiment
configuration. To estimate the component utilization and area cost, we
adopt exactly the same type of photonic devices in all architectures, as
listed in Table II, and accumulate the area of each optical component
for approximation. Placement or routing information is not consid-
ered in our estimation. In Table I, the first column indicates different
neural network configurations. For example, (14×14)-256(4)-10(2)
describes a 2-layer network, with 196 input channels, 256 output
channels in the first layer (k=4), and 10 output channels in the
second layer (k=2). The TΣU-based architecture adopts a unique

Fig. 8: Normalized area comparison with different model configurations.
Model 1-4 refer to Table I. SVD refers to [12] and TΣU refers to [13].

training methodology and claims to have small accuracy degradation
(< 1%) [13], thus we assume it has approximately the same accuracy
as the SVD-based architecture. In the TΣU-based architecture, the
total number of MZIs used to implement an m×n weight matrix is
bounded by n(n+ 1)/2.

Among various network configurations, our proposed architecture
outperforms the SVD-based architecture and the TΣU-based architec-
ture with lower optical component utilization and better area cost. We
normalize all areas to our architecture with pruning applied and show
the normalized area comparison in Fig. 8. Consistent with analytical
formulations in Section V, the experimental results show that, as the
difference between input and output channels for each layer in the
original MLPs gets larger, our proposed architecture can save a larger
proportion of optical components. Specifically, fully-connected layers
with highly-imbalanced input and output channels, e.g., ((28×28)-
400-10), could benefit the most by using our proposed architecture.
For MLPs with nearly-square weight matrices, e.g., ((14×14)-160-
160-10), although the area gap is decreasing, our proposed archi-
tecture still shows superior area efficiency. This is because FFT-
based structured matrix multiplications can reduce much parameter
redundancies and save components while still maintaining model
expressivity. Furthermore, ablation experiments on our structured
pruning method validate the effectiveness of the proposed two-phase
training flow. It can save an extra 30-50% optical components with
negligible model expressivity loss. Even though the area cost is
generally not where optical neuromorphic systems excel, their ultra-
low latency and low power consumption make them very promising
NN inference accelerators, e.g., in data centers. Therefore, by intro-
ducing an area-efficient and pruning-compatible ONN architecture,
our work enables more compact ONN implementations without
accuracy degradation.

VII. CONCLUSION

In this work, we propose an area-efficient optical neural net-
work architecture. Our proposed ONN architecture leverages block-
circulant matrix representation and efficiently realizes matrix-vector
multiplication via optical fast Fourier transform. This architecture
consists of five stages, including splitter tree, OFFT, element-wise
multiplication, OIFFT, and combiner tree. Compared with the previ-
ous SVD-based and TΣU-based ONN architectures, the new design
cuts down the optical component utilization and improves area cost
by 2.2∼3.7× among various network configurations. We also propose
a two-phase training flow to perform structured pruning to our
architecture and further improve hardware efficiency with negligible
accuracy degradation.

ACKNOWLEDGMENT

The authors acknowledge the Multidisciplinary University Research
Initiative (MURI) program through the Air Force Office of Scientific
Research (AFOSR), contract No. FA 9550-17-1-0071, monitored by Dr.
Gernot S. Pomrenke.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Proc. NIPS, 2012.

[2] T. Mikolov, M. Karafiát, L. Burget et al., “Recurrent neural network
based language model,” in INTERSPEECH, 2010.

[3] S. K. Esser, P. A. Merolla, J. V. Arthur et al., “Convolutional networks
for fast, energy-efficient neuromorphic computing,” PNAS, 2016.

[4] Y. Wang, W. Wen, B. Liu et al., “Group scissor: Scaling neuromorphic
computing design to large neural networks,” in Proc. DAC, 2017.

[5] Y. Zhang, X. Wang, and E. G. Friedman, “Memristor-based circuit
design for multilayer neural networks,” IEEE TCAS I, 2018.

[6] A. N. Tait, M. A. Nahmias, B. J. Shastri et al., “Broadcast and weight:
An integrated network for scalable photonic spike processing,” J. Light.
Technol., 2014.

[7] J. Bueno, S. Maktoobi, L. Froehly et al., “Reinforcement learning in a
large-scale photonic recurrent neural network,” Optica, 2018.

[8] D. Brunner, M. C. Soriano, C. R. Mirasso et al., “Parallel photonic in-
formation processing at gigabyte per second data rates using transient
states,” Nature Communications, 2013.

[9] L. Vivien, A. Polzer, D. Marris-Morini et al., “Zero-bias 40gbit/s
germanium waveguide photodetector on silicon,” Opt. Express, 2012.

[10] M. Reck, A. Zeilinger, H. Bernstein et al., “Experimental realization of
any discrete unitary operator,” Physical review letters, 1994.

[11] A. Ribeiro, A. Ruocco, L. Vanacker et al., “Demonstration of a 4×4-port
universal linear circuit,” Optica, 2016.

[12] Y. Shen, N. C. Harris, S. Skirlo et al., “Deep learning with coherent
nanophotonic circuits,” Nature Photonics, 2017.

[13] Z. Zhao, D. Liu, M. Li et al., “Hardware-software co-design of slimmed
optical neural networks,” in Proc. ASPDAC, 2019.

[14] Z. Li, S. Wang, C. Ding et al., “Efficient recurrent neural networks using
structured matrices in fpgas,” in ICLR Workshop, 2018.

[15] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” in Proc. NIPS, 2015.

[16] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-group
lasso,” Journal of Computational and Graphical Statistics, 2013.

[17] O. Grandstrand, Innovation and Intellectual Property Rights. Oxford
University Press, 2004.

[18] Y. LeCun, “The MNIST database of handwritten digits,” http://yann.
lecun.com/exdb/mnist/, 1998.

[19] L. Zhao, S. Liao, Y. Wang, Z. Li, J. Tang, and B. Yuan, “Theoretical
properties for neural networks with weight matrices of low displacement
rank,” in Proc. ICML, 2017.

[20] J. Friedman, T. Hastie, and R. Tibshirani, “A note on the group lasso
and a sparse group lasso,” arXiv preprint arXiv:1001.0736, 2010.

[21] N. C. Harris, Y. Ma, J. Mower, T. Baehr-Jones, D. Englund,
M. Hochberg, and C. Galland, “Efficient, compact and low loss thermo-
optic phase shifter in silicon,” Opt. Express, 2014.

[22] Z. Sheng, Z. Wang, C. Qiu, L. Li, A. Pang, A. Wu, X. Wang, S. Zou,
and F. Gan, “A compact and low-loss mmi coupler fabricated with cmos
technology,” IEEE Photonics Journal, 2012.

[23] Y. Zhang, A. Hosseini, X. Xu, D. Kwong, and R. T. Chen, “Ultralow-
loss silicon waveguide crossing using bloch modes in index-engineered
cascaded multimode-interference couplers,” Opt. Lett., 2013.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. ICCV, 2015.

[25] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2015.

