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ABSTRACT Due to their high spatial resolution, thin-section magnetic resonance (MR) images serve as 
ideal medical images for brain structure investigation and brain surgery navigation. However, compared with 
the clinically widely used thick-section MR images, thin-section MR images are less available due to the 
imaging cost. Thin-section MR images of infants are even scarcer but are quite valuable for the study of 
human brain development. Therefore, we propose a method for the reconstruction of thin-section MR images 
from thick-section images. A two-stage reconstruction framework based on generative adversarial networks 
(GANs) and a convolutional neural network (CNN) is proposed to reconstruct thin-section MR images from 
thick-section images in the axial and sagittal planes. A 3D-Y-Net-GAN is first proposed to fuse MR images 
from the axial and sagittal planes and to achieve the first-stage thin-section reconstruction. A 3D-DenseU-
Net followed by a stack of enhanced residual blocks is then proposed to provide further detail recalibrations 
and structural corrections in the sagittal plane. In this method, a comprehensive loss function is also proposed 
to help the networks capture more structural details. The reconstruction performance of the proposed method 
is compared with bicubic interpolation, sparse representation, and 3D-SRU-Net. Cross-validation based on 
35 cases and independent testing based on two datasets with totally 114 cases reveal that, compared with the 
other three methods, the proposed method provides an average 23.5% improvement in peak signal-to-noise 
ratio (PSNR), 90.5% improvement in structural similarity (SSIM), and 21.5% improvement in normalized 
mutual information (NMI). Quantitative evaluation and visual inspection demonstrate that our proposed 
method outperforms those methods by reconstructing more realistic results with better structural details. 

INDEX TERMS Deep learning, infant magnetic resonance (MR) images, super-resolution reconstruction, 
thick-section, thin-section.

I. INTRODUCTION 
Thin-section head magnetic resonance (MR) images 
typically have a slice thickness of 1 mm and a spacing gap 
of zero. The high spatial resolution of thin-section head MR 
images is ideal for brain structure analysis, volumetric 
measurement, and surgery navigation. Thin-section head 
MR images, however, are not always available. Clinically 
routine head MR images are typically thick-section images 
with a slice thickness of 4 mm to 6 mm and a spacing gap of 
0.4 mm to 1 mm. The higher section thickness leads to a 
lower spatial resolution, which limits the usage of thick-
section MR images in brain-related research.  
    Compared with imaging data for adults, brain MR images 
of infants are even more valuable because these images 

provide great insight into human brain development after 
birth. The acquisition of infant brain MR images, however, 
is even more difficult since MR imaging, let alone thin-
section imaging, is rarely performed on infants without 
sufficient reasons. This situation inspired us to develop a 
method that can provide a spatial resolution comparable to 
thin-section MR images by using available thick-section 
images. A thin-section MR image reconstruction method is 
thus proposed in this paper. 

This reconstruction method can also be used to normalize 
the image layer spacing. In a multi-center, multi-device 
scenario, proposed method can be used to normalize MR 
images obtained at different layer spacings to a uniform layer 
spacing, which is very beneficial for data-driven researches, 
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such as human brain development statistics based on image 
big data.   

Thin-section MR image reconstruction was considered a 
multiplanar MR image registration problem. For example, 
Mahmoudzadeh et al. [1] applied traditional interpolation 
algorithms to thick-section MR images in all three planes and 
combined them with the iterative registration algorithm 
optimized automatic image registration (OAIR) [2] with the 
guidance of a pixelwise loss function. The reconstruction 
results of this algorithm are visually improved but focus only 
on adult head MR images with limited consideration of 
structural similarity (SSIM) among human brains. Moreover, 
thin-section MR image reconstruction can be handled as a 
frame interpolation task. As proposed in [3], a 
decomposition-reconstruction method based on the rules of 
organ consistency is adopted to obtain a higher inter-slice 
resolution. Thin-section image reconstruction can also be 
considered a super-resolution problem. Yang et al. [4] 
proposed a trainable method to reconstruct high-resolution 
images by utilizing the same sparse representation between 
low-resolution image patches and their high-resolution 
counterparts. With the development of deep learning (DL) 
techniques, convolutional neural networks (CNN) and 
generative adversarial networks (GANs) have gained 
momentum recently, especially in the image super-resolution 
field. Accordingly, thin-section MR image reconstruction, if 
considered as a nonisotropic super-resolution problem, will 
benefit a great deal from the powerful modeling capacity of 
deep neural networks. For example, Heinrich et al. [5] 
recently applied a 3D-SRU-Net for isotropic super-
resolution from nonisotropic three-dimensional (3-D) 
electron microscopy. Our group [6] proposed a residual-
network-based 3D-SRGAN to reconstruct adult thin-section 
MR images from thick-section MR images, however only the 
reconstruction in the axial plane was considered. In addition, 
CNNs and GANs have been widely utilized to improve the 
resolution of MR images [7], [8]. Compared to traditional 
algorithms, DL algorithms show superior potential in thin-
section MR image reconstruction by not only increasing 
reconstruction performance but also reducing the 
reconstruction time to seconds. 

In this paper, the task is to combine the multiplanar feature 
fusion and 3-D nonisotropic super-resolution problems. Our 
proposed framework is inspired by several state-of-the-art 
DL architectures. First, U-Net [9], as it performs well in the 

biomedical segmentation field, distinguishes itself in feature 
fusion problems through multiscale convolution and 
upscaling. Super-resolution generative adversarial neural 
networks (SRGANs) [10] are empirically proven to have 
remarkable performance in the super-resolution field, as they 
extract both low- and high-frequency information from 
images. In addition, enhanced deep residual networks 
(EDSR) [11], a new residual architecture that won first prize 
in the NTIRE 2017, provide an efficient approach to 
recovering high-resolution images. Inspired by the above 
state-of-the-art models, we propose a two-stage 
reconstruction framework to apply the mapping from thick-
section MR images in the axial and sagittal planes to their 
axial thin-section counterparts. Specifically, the first stage is 
a least-squares GAN (LSGAN) [12] with a newly proposed 
3D-Y-Net generator, which is designed to fuse axial and 
sagittal thick-section MR images and map them onto the 
thin-section image space. The second stage is a cascade 
connection of 3D-DenseU-Net and enhanced residual 
blocks, designed to increase statistical metrics and eliminate 
artifacts via further detail refinement. A 3-D gradient 
correction loss and a self-adaptive Charbonnier loss are 
proposed to concentrate the generator’s optimization 
attention and capture high-frequency differential 
information. We then evaluate the performance of the 
proposed two-stage framework by comparing the 
reconstruction results with the ground truth, showing that our 
proposed method is more effective than three representative 
methods, comprising bicubic interpolation [13], sparse 
representation [4], and 3D-SRU-Net [5]. We also undertake 
two experiments to further validate the contribution of 
multiplanar image fusion and our proposed comprehensive 
loss function. Finally, the conclusion summarizes the paper. 
II. PROPOSED METHOD 

A. OVERVIEW 
CNNs have outperformed many traditional algorithms in the 
image super-resolution field. Via hierarchical spatial 
convolution and optional nonlinearity, CNNs can learn the 
prior knowledge from low-level and high-level features 
extracted from images and accordingly recover super-
resolved images through upsampling operations such as 
fractionally-strided convolution [14] and sub-pixel 
convolution [15]. Recently, with an increasing number of 
state-of-the-art CNN models, e.g., EDSR, SRCNN [16], and 

FIGURE 1. The proposed two-stage framework for thin-section MR image reconstruction. The first stage is 3D-Y-Net-GAN, and the second stage is 3D-
DenseU-Net. TPMs represent tissue probability maps, which will be discussed in later sections. 
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VDSR [17], GANs are becoming gradually integrated with 
these popular CNN models in order to preserve high-
frequency information. Under the supervision of the 
discriminator, the generator is driven to maximize the 
distribution similarity between the generated data and the 
real data, thus generating results that are more realistic. 
However, recently proposed super-resolution models mainly 
seek to upscale both dimensions of two-dimensional (2-D) 
images by the same factor [7], [15], [18], [19], [20], [21]. 
Even if several models are extended to handle 3-D images 
[5], [6], low-resolution images in multiple planes barely 
make a collaborative contribution in a single framework. In 
this study, we propose a two-stage reconstruction framework 
based on axial and sagittal thick-section MR images to 
reconstruct corresponding axial thin-section MR images 
with an upscaling factor of 8, as shown in Fig. 1. In our 
framework, multiplanar thick-section MR images are fully 
fused by our proposed 3D-Y-Net-GAN and 3D-DenseU-Net 
to recover thin-section images collaboratively. In the 
following sections, we demonstrate the details of the 
proposed two-stage reconstruction framework and our 
proposed comprehensive loss function. To better 
demonstrate the task, relative spatial locations of thick-
section and thin-section MR images are shown in Fig. 2. 

B. NETWORK ARCHITECTURE 
In this section, we introduce our proposed two-stage 
reconstruction framework. The first stage is a 3D-Y-Net-
GAN consisting of a 3D-Y-Net generator and a conditional 
discriminator, which produces primary thin-section MR 
images for subsequent detail correction. The second stage is 
a 3D-DenseU-Net followed by a stack of enhanced residual 
blocks for final detail recalibration. The inputs are registered 
axial thick-section MR images, denoted as 𝐈  with size 

L×W×H, and registered sagittal thick-section MR images, 
denoted as 𝐈ௌ  with size L×W×rH where r represents the 
upscaling factor along the z-axis. The outputs are thin-
section MR images, denoted as 𝐈ோ with size L×W×rH. Note 
that L, W, and H represent spatial sizes along x, y, and z axes 
respectively. 

1) 3D-Y-NET-GAN 
As the first stage of the whole framework, a 3D-Y-Net-GAN 
is proposed to take 𝐈 and 𝐈ௌ as inputs and reconstruct thin-
section MR images with an upscaling factor of r, denoted as 
𝐈 . The generator consists of three branches: 1) feature 
extraction (FE), 2) feature fusion (FF), and 3) reconstruction. 
The detailed network structure of the generator is illustrated 
in Fig. 3(a). In our case, r is set to 8, and we adopt a patch-
based training strategy to reduce computational cost. 
Specifically, at the first stage, the size of the patches for 𝐈 
is 32×32×15 and the size of the patches for 𝐈ௌ  and 𝐈  is 
32×32×120. Note that, for inference, instead of image 
patches, full-size MR images are used as inputs. 

a) Feature Extraction Branches 
For the axial FE branch, 3-D convolutional layers are 
adopted to extract features from input images, and 
maxpooling layers with unbalanced strides of [1,2,1] or 
[2,1,1] are adopted to generate differently sized feature maps 
at different levels. Notably, maxpooling layers can ignore 
certain minute structural discrepancies, such that the 
negative impact induced by misalignment after registration 
would be mitigated to some degree. To clarify, the 3-D 
convolutional layer is Convolution+Batch 
Normalization+Swish. Specifically, Swish [22] is a new 
activation function that overcomes the dead-neuron 
problems caused by ReLU. In our framework, we set the 
untrainable parameter in Swish to be 1. The outputs of the 

 
FIGURE 2. (a) 15 slices of normalized axial thick-section MR images, (b) 120 slices of normalized axial thin-section MR images, (c) 120 slices of 
normalized sagittal thick-section MR images. x, y, and z represent three axes in the coordinate system we use to describe the volumes. L, W, and H
represent image sizes of MR images along x, y, and z axes, respectively. The yellow and blue lines illustrate their relative spatial locations. px is short 
for pixel. 
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axial FE branch are feature maps in three scales: 𝐅ଵ
  

(L×W×H), 𝐅ଶ
  (L×W/2×H), and 𝐅ଷ

  (L/2×W/2×H). The 
sagittal FE branch is generally of the same structure as the 
axial FE branch, which generates similar outputs 𝐅ଵ

ௌ 
(L×W×H), 𝐅ଶ

ௌ  (L×W/2×H), and 𝐅ଷ
ௌ  (L/2×W/2×H). However, 

given the size discrepancy between 𝐈  and 𝐈ௌ , an extra 

preprocessing module consisting of 3 convolutional layers 
with strides of [1,1,2] is appended to its entry. 

b) Feature Fusion Branches 
The FF branch is a topological inversion of FE branches. At 
each level, the FF branch upsamples multiscale feature maps 
through sub-pixel convolution. Concretely, sub-pixel 

 
FIGURE 3.  (a) shows the network structure of 3D-Y-Net, e.g., (32,32,15,64) represents 64-channel feature maps with a spatial size of 32×32×15, e.g., k3s 
[1,2,1] represents a convolution kernel size of 3×3×3 with strides of [1,2,1]. Unless specified, kernel sizes, strides, and feature map shapes are identical 
between axial and sagittal branches, thus most parameters are only shown in either branch. Dropout 0.3 represents the dropout operation with a drop 
rate of 0.3. Red frameworks represent patches for training; (b) shows the structure of the reconstruction branches. Path represents the upscaling 
process, e.g., Path 1-4 means upsampling images with sizes of L×W×H to images with sizes of L×W×4H. The intersection of two arrows represents 
channel concatenation before convolution. 
 



2169-3536 (c) 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2019.2918926, IEEE Access

 

 1 

convolution [15] is a normal convolution followed by a pixel 
shuffler, which is an efficient substitution for transpose 
convolution. The means by which FE and FF branches are 
connected at three levels is a design inspired by the U-Net 
structure, which fully fuses multiscale features, guarantees 
the structural alignment, and avoids the gradient-vanishing 
problem.  

c) Reconstruction Branches 
The detailed network structure of the reconstruction branch 
is shown in Fig. 3(b). This branch is specially designed for a 
large upscaling factor of 8. Instead of a sequential connection 
of 3 upsampling layers with an upscaling factor of 2, which 
might stretch the images and generate severe artifacts for 
lack of adequate information forwarding or feature reuse, we 
adopt a multipath upscaling strategy to mitigate such 
artifacts. Specifically, the outputs of Path 2-4 and Path 1-4 
are concatenated as the inputs of Path 4-8; the outputs of 
Path 4-8 and Path 2-8 are concatenated as the inputs of the 
final convolution. We use 𝐈 to represent the output of the 
reconstruction branch, which is also the final output of the 
3D-Y-Net generator. 

d) Discriminator 
Given that the unsupervised GAN model is adopted here to 
solve a supervised regression problem, the original 
discriminator that gives high scores to realistic samples is not 
theoretically applicable for this supervised regression 
problem because our generator does not sample prior vectors 
from random noise. Instead, our discriminator is designed to 
be of a conditional structure [23], [24]. Specifically, the 
discriminator can recognize the input of the generator such 
that it can classify a reconstruction mapping from thick-
section images to thin-section images as “real” or “fake.” 
The detailed network structure is shown in Fig. 4. This 
structure takes 𝐈, 𝐈ௌ, and 𝐈 as fake inputs and 𝐈, 𝐈ௌ, and 
𝐈ீ் (ground-truth images) as real inputs and outputs a score 
tensor for later computation of loss functions. 

2) 3D-DENSEU-NET 
As the second stage of the whole framework, a 3D-DenseU-
Net followed by a stack of 2 enhanced residual blocks is 
proposed for detail recalibration, whose network structures 
are shown in Fig. 5. The key point of detail recalibration lies 

in information reuse. To reuse axial thick-section images, we 
simply insert 𝐈  into 𝐈  according to their corresponding 
spatial positions, which is denoted as 𝐈. Through this way, 
axial thick-section images can be easily used to correct axial 
images. When reusing sagittal thick-section images, slice 
insertion is not applied. The main reason is that we would 
like to reuse all slices in 𝐈ௌ . But if 𝐈ௌ  and sagittal-slice-
inserted 𝐈  are both used as inputs of the second stage 
network, more information of sagittal slices than that of axial 
slices will be introduced into 3D-DenseU-Net, which could 
decrease the image quality in the axial plane. Based on the 
above consideration, We set 𝐈, 𝐈ௌ, and 𝐈 as inputs of the 
3D-DenseU-Net and let 𝐈ோ  denote the final output thin-
section MR images. Notably, the dense architecture we adopt 
allows the output of the previous convolutional layers to be 
passed down to several convolutional layers, which, 
according to [21], [25], can fully leverage low-level and 
high-level features. Additionally, to prevent blurriness and 
structural distortion caused by top-level and bottom-level 
skip connections, we apply value decay before channelwise 
concatenation to balance feature maps at different levels. 
Moreover, the tail enhanced residual blocks are also 
designed for similar consideration, since shallow features 
passing through the top-level skip connection could corrupt 
the final outputs. Without traditional batch normalization 
layers, enhanced residual blocks are also preferred as they 
cut down GPU RAM usage, thus allowing larger batch size 
in training phase. 

 Given limited GPU capacity, there is a trade-off between 
convergence rate and receptive field. Specifically, relatively 
larger patch size leads to larger receptive field, thus more 
useful information can be seen by convolution kernels. But 
it also reduces the maximum batch size we could use, which 
could harm the convergence rate especially when batch size 
is already small. After hyperparameter search, we train 3D-
DenseU-Net based on randomly sampled patches with size 
of 48×48×48 to strike a balance between convergence and 
receptive field. 

It is worth noting that 3D-DenseU-Net and 3D-Y-Net-
GAN are trained separately instead of end-to-end. Two 
major reasons can account for this. First, separate training 

 
FIGURE 4.  Network structure of the conditional discriminator. Note that the slope of the negative part of the Leaky ReLU is set to 0.2. IGT is the real 
sample, IY is the fake sample, IA and IS are inputs of the generator. k represents the kernel size, and f represents the number of filters. All the dropout 
rates are set to 0.3. 
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could guarantee the functionality of initial reconstruction as 
designed for 3D-Y-Net-GAN, and also decouple the 
functionality of two stages. Second, end-to-end training of 
two 3-D DL models are currently not feasible on our GPU 
resources if using acceptable batch size. 

3) LOSS FUNCTION 
To train the 3D-Y-Net-GAN to learn the mapping from 𝑰 
and 𝐈ௌ to 𝐈, we need to search the set of network parameters 
𝛉ீ  and obtain the optimal parameters 𝛉ீ that minimize the 
generator’s loss function 𝐿ீ , which is described as in (1), 
where G is taken as the generator and 𝐈ீ்  is taken as the 
ground truth. 

  ˆ =arg min  L G , ,
G

A S GT
G Gθ

θ I I I       ( 1 ) 

To find a loss function that evaluates the difference between 
the generated images and the ground-truth images, we design 
a loss function that consists of a self-adaptive Charbonnier 
loss, a 3-D gradient correction loss, an adversarial loss, and 
an ℓଶ weight regularization term: 

1 2 3L L L L LG G G G
G SC GC AD WR              (2) 

where λଵ, λଶ, and λଷ represent the respective terms’ weights. 
The above four components will be further discussed in the 
following paragraphs. Given the second stage 3D-DenseU-
Net is not based on adversarial learning, we train it with the 
same loss function Lீ  as used for 3D-Y-Net-GAN except 
that λଶ is set to 0. 

a) Self-adaptive Charbonnier Loss 
In supervised regression problems, the ℓଵ and ℓଶ norms are 
widely used because pixelwise restriction is practically 
important to guarantee the basic SSIM. However, the ℓଶ 
norm often leads to overly smooth results, and the ℓଵ norm 
penalizes the deviation of the prediction from the ground 
truth indiscriminately. In one study [20], a Charbonnier loss, 
a differentiable variant of the ℓଵ  norm, showed better 
performance and higher robustness than an ℓଵ and ℓଶ norm. 
In another study [5], a cubic-weighted mean square error 
(MSE) loss was introduced to emphasize the performance in 
“difficult” areas, which represent areas with relatively large 
pixelwise differences between generated images and ground 
truth. However, the difference between the ground truth and 
upsampled images through bicubic interpolation will not 
always be a good indicator of the actual difficult areas along 
the training process and is even worse when facing a large 

upscaling factor. Therefore, we propose the use of the 
dynamic coefficients calculated by the difference between 
the current generated images and the ground truth to weigh 
the robust Charbonnier loss:  
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where 𝜀 is a small value, which is set to 10-6, (∙)ଶ performs 
element-wise square if input is a tensor, and max (∙) function 
calculates the global maximum element of a tensor, which 
outputs a scalar value.  

b) 3-D Gradient Correction Loss 
A Charbonnier loss merely addresses the pixelwise 
difference, which may lead to inadequate attention to the 
second-order differential information. This being the case, 
we adopt a 3-D gradient correction loss to explicitly exert a 
second-order constraint between adjacent pixels along the x, 
y, and z-axes, which can help our model generate sharper 
edges:         
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c) Adversarial Loss 
To make the generated images more realistic, we utilize a 
conditional discriminator to supervise the learning process of 
the generator. Taking into account robustness and 
implementation efficiency, we use the LSGAN loss as the 
adversarial loss. For the conditional discriminator, its loss 
function is defined as follows: 

     2 21
L D D,

2
,1, , 0A S SD GT AY 

    
 

I I I I I I

     (5) 

FIGURE 5.  Network structure of the second stage. (a) is 3D-DenseU-Net; (b) is the enhanced residual block. Red framework represents patches for 
training. ×0.5 represents value decay by a factor of 0.5. 
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where D represents the discriminator and  represents the 
mathematical expectation, which practically calculates the 
mean value of the output tensor. To make it clear, the 
discriminator tries to make the score of ground truth close to 
1 and that of fake inputs close to 0. 
    The generator tries to fool the conditional discriminator by 
increasing the score of the fake samples. Accordingly, the 
adversarial loss for the generator is shown below: 

  2
, ,L D 1G A SY

AD
 

  
 

I I I                  (6) 

    Notably, the balance between the generator and the 
discriminator is crucial when training GANs, which means 
we need to strike a balance between the adversarial loss and 
the Charbonnier loss. Therefore, we consider this adversarial 
loss an auxiliary term in the generator’s loss function and set 
a small value for its weight λଶ. The hyperparameter setting 
of λଵ , λଶ , and λଷ  will be further discussed in the 
Experimental Results section. 

d) ℓଶ Weight Regularization Loss 
Theoretically, parameters with smaller norms lead to lower 
model complexity, which is indicative of a decreased 
likelihood of encountering the overfitting problem. Thus, we 
adopt an ℓଶ weight regularization loss to mitigate overfitting 
problem in this study: 

                       
2

2
LWR

G
G W                          (7) 

where 𝐖ீ represents all the kernel weights of the generator, 
and ‖∙‖ଶ represents the ℓଶ norm. 
III. EXPERIMENTAL RESULTS 
To demonstrate the effectiveness of multiplanar MR image 
fusion, we conduct an ablation experiment among 3 cases: 1) 
our full framework with axial and sagittal images as inputs 
(Ours Full), 2) a partial version of our method with only axial 
images as input (Ours Partial Axial), and 3) a partial version 
of our method with only sagittal images as input (Ours Partial 
Sagittal). Specifically, for Ours Partial Axial and Ours 
Partial Sagittal, we modify the 3D-Y-Net generator to have 
two FE or FF branches and discard the input 𝐈ௌ  or 𝐈 , 
respectively, at the second stage. After the above network 
modifications, we have two partial versions of our proposed 
framework, which only leverage thick-section MR images in 
a single plane. 

  To validate our proposed comprehensive loss function, we 
conduct another ablation experiment among four cases: 1) ℓଵ 
norm+Lீ+L +Lௐோ, 2) Lୗେ+Lீ+Lௐோ, 3) Lୗେ+L +Lௐோ, 
and 4) Lୗେ+Lீ+L +Lௐோ. 

  To evaluate our proposed reconstruction method, three 
representative methods and our proposed first-stage network 
are used for comparison: 1) traditional bicubic interpolation 
[13], 2) sparse representation (SR) [4], 3) 3D-SRU-Net [5], 
and our proposed first stage 3D-Y-Net-GAN. Each of those 
comparison methods will be detailed below. 

  Traditional bicubic interpolation [13] is an untrainable 
algorithm that predicts a certain pixel with adjacent 16 
pixels. SR [4] is a trainable method that seeks a SR for each 
patch of the low-resolution image and then uses the 

coefficients of this representation to generate its high-
resolution counterpart. Specifically, we train the coupled 
dictionaries based on the 2-D slices in the sagittal plane. As 
described in the introduction, 3D-SRU-Net has been 
proposed for isotropic super-resolution reconstruction from 
nonisotropic 3-D electron microscopy. In [5], low-resolution 
and high-resolution images are jointly leveraged when 
training this variant of the original U-Net to predict high-
resolution images from their blurred counterparts. In our 
paper, we increase the depth of its network and append 3 
convolutional layers with strides of [2,1,1] to its entry, 
similar to that in our second-stage framework, such that its 
upscaling factor is extended to 8 and can take the same inputs 
as our proposed first-stage networks. We also show the 
reconstruction results of our proposed first stage network 
3D-Y-Net-GAN in order to validate the effectiveness of the 
second stage network.  

  For quantitative evaluation, we adopt metrics, including 
peak signal-to-noise ratio (PSNR), SSIM, and normalized 
mutual information (NMI), for image quality assessment. 
Note that we clip the pixels that are out of the valid dynamic 
range [-1,1] and cast the generated MR images and the 
ground truth to an 8-bit grayscale. PSNR is defined as 
follows: 
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where MAXI represents the maximum pixel value, which is 
255 in this case; and r represents the upscaling factor, which 
is 8 in this case. L, W, and H represent the spatial size of the 
generated MR images, which are 144, 184, and 120, 
respectively, in this case. SSIM measures the structural 
similarity between two images by calculating their cross-
correlation, which is defined as follows: 
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where 𝜇 and 𝜇represent the respective mean values of two 
images; 𝜎

ଶ  and 𝜎
ଶ  represent the respective variances; 𝜎 

represents the covariance of the two images; and c1=(k1L)2, 
c2=(k2L)2 are two constants that prevent the dominator from 
being 0, where k1 and k2 are typically set to be 0.01 and 0.03, 
respectively; and L represents the dynamic range of the pixel 
values, which is set to be 255 in our case. NMI measures the 
mutual dependence between two variables, which is defined 
as follows: 
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where H(X) is the entropy of variable X, H(X,Y) is the joint 
entropy of X and Y, 𝑝(𝑥)  is the marginal probability 
distribution function of 𝑥 , and 𝑝(𝑥 , 𝑦)  is the joint 
probability distribution function of 𝑥 and 𝑦 . Higher PSNR, 
SSIM, and NMI mean that the generated MR images are 
much closer to the ground truth. 

A. DATA AND PREPROCESSING 
We validate our two-stage framework on the reconstruction 
of thin-section infant head MR images. Thick-section and 
thin-section MR images of 154 infants aged 2 to 5 years old 
were collected from the Children’s Hospital of Fudan 
University, Shanghai, China. For each individual infant, we 
collected axial thick-section, sagittal thick-section, and axial 
thin-section MR images with the specific imaging 
parameters listed in Table I. We randomly selected 40 
samples for the cross-validation dataset, another 65 samples 
as the independent testing dataset 1, and the rest 49 samples 
as the independent testing dataset 2. Note that the collection 
time interval of two independent testing sets is half a year. 
We applied spatial normalization, grayscale normalization, 
and histogram matching to our raw MR image data for data 
preprocessing. We use preprocessed thick-section images as 
inputs of our model, and preprocessed thin-section images as 
the ground truth during the training phase. 

  Given different imaging parameters (e.g. field of view) 
and various intensities between thin-section and thick-
section MR images, we observed spatial misalignment and 
intensity imbalance in raw image-domain MRI data, for 
which raw MR images in DICOM format can not be directly 
used in our experiments. Thus we preprocess all raw MR 
images as followings. For registration, we apply unified 
spatial normalization to all the MR images using MATLAB 
tools SPM12 [26], to mitigate spatial misalignment between 
thin-section and thick-section MR images. We firstly 
transform MR images from Digital Imaging and 
Communications in Medicine (DICOM) format to 
Neuroimaging Informatics Technology Initiative (NIfTI) 
format. Secondly, we segment the infant brain atlas [27] to 
generate the full version of tissue probability maps (TPMs) 
which contain probability maps of various tissues in the 
image data, including gray matter (GM), white matter (WM), 
cerebrospinal fluid (CSF), skull, scalp, and air mask. Thirdly, 
SPM12 estimates nonlinear deformation field that best aligns 
the generated TPMs to the individual’s MR images. Then, 
MR images are warped according to their own estimated 

deformation field. Finally, we obtain 𝐈 of size 144×184×15, 
𝐈ௌ and 𝐈ீ் of size 144×184×120. For detailed configuration 
of registration, we set voxel size of thin-section images to 
1×1×1 mm3, axial thick-section images to 1×1×8 mm3, and 
sagittal thick-section images to 1×1×1 mm3. Besides, we use 
ICBM Asian brain template in affine regularization and 
adopt appropriate bounding box such that registered MR 
images have the exact spatial size as illustrated in Fig. 2. 
Other configurations are kept default. After registration, 
possible misalignment due to various spatial positions and 
head shapes is minimized. Note that the field of view of 
sagittal thick-section MR images is smaller than that of thin-
section images, thus there are uncovered head areas at each 
side in 𝐈ௌ , as shown in Fig. 2(c). To avoid the structural 
incompleteness of  𝐈ௌ, we upsample corresponding areas in 
𝐈 , and simply use them to fill the uncovered areas in 𝐈ௌ . 
Since SPM12 can not guarantee successful registration on all 
samples, we actually found 5 poorly-registered samples in 
the cross-validation dataset, which were accordingly 
excluded from it. Thus, 35 samples comprise the actual 
cross-validation dataset for all experiments.  

  Also, given that registered MR images have a 16-bit 
grayscale with various intensities among different subjects, 
we normalize intensities of all MR images into [-1,1], using 
simple linear transformation. Then, we apply a histogram-
matching algorithm to all MR images with a fixed sample as 
reference to eliminate histogram imbalance.  

  In order to enlarge our training dataset and mitigate the 
overfitting problem for the data-driven DL model, we adopt 
data augmentation by applying radial transformation [28] 
and mirror reflection to our training dataset.  

B. EXPERIMENTAL SETTINGS 
We adopt 5-fold cross-validation on the cross-validation 
dataset to evaluate our framework. For fold s, we divide the 
cross-validation dataset of 35 samples randomly into 2 parts, 
with 7 samples as the validation data and the other 28 as the 
training data. For data augmentation, we apply radial 
transformation and mirror reflection to the training data, such 
that it is enlarged to 336 samples at the first stage and 56 
samples at the second stage. All of the validation procedures 
are applied to 5 iterations. To further validate the 
generalization of our proposed model, we select a certain 
model with the best performance in the cross-validation and 
evaluate it on independent testing dataset 1 of 65 samples,  
 

TABLE I 
IMAGING PARAMETERS OF OUR DATASET. 

Imaging Parameters Axial Thin-section Images Axial Thick-section Images Sagittal Thick-section Images 
Imaging Pulse Sequence 3D T1 BRAVO T1 FLAIR T1 FLAIR 
Voxel Size (mm) 0.5×0.5×1 0.4687×0.4687×6.5 6.5×0.4687×0.4687 

Number of Slices 126-153 19 19 
Repetition Time (ms) 8.17 1450 2291.30 
Echo Time (ms) 3.17 25.10 25.30 
Inversion Time (ms) 450 627.84 749.77 
Flip Angle (degree) 12 111 111 
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TABLE II 
QUANTITATIVE EVALUATION OF THIN-SECTION MR IMAGE RECONSTRUCTION METHODS USING DIFFERENT INPUT DATA: PSNR, SSIM, AND NMI 

Dataset Input plane(s) 
PSNR (dB) 

Mean (std.)               Med. 
SSIM 

Mean (std.)               Med. 
NMI 

Mean(std.)                Med. 

Cross-validation 
Dataset 

Axial Only 19.53(0.79) 19.60 0.63(0.04) 0.64 0.20(0.01) 0.20 
Sagittal Only 19.65(0.99) 19.57 0.67(0.05) 0.69 0.21(0.02) 0.21 
Axial and Sagittal 19.75(0.85) 19.69 0.69(0.05) 0.71 0.21(0.02) 0.21 

Independent 
Testing Dataset 

Axial Only 18.77(0.96) 18.84 0.62(0.05) 0.63 0.19(0.01) 0.19 
Sagittal Only 19.06(0.75) 19.03 0.64(0.03) 0.65 0.19(0.01) 0.20 
Axial and Sagittal 19.12(0.85) 18.98 0.66(0.03) 0.66 0.20(0.01) 0.20 

Bold text indicates the best performance. 

 
FIGURE 6.  Visual comparison to show the contribution of different input data. 
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and independent testing dataset 2 of 49 samples, whose 
collection time interval is half a year.  

For 3D-Y-Net-GAN, we randomly sample 12 patches per 
volume with a size of 32×32×15 for 𝐈 and 32×32×120 for 

TABLE III 
QUANTITATIVE EVALUATION OF THIN-SECTION MR IMAGE RECONSTRUCTION METHODS USING DIFFERENT LOSS FUNCTIONS: PSNR, SSIM, AND NMI 

ℓଵ norm Lௌ  Lீ L 
PSNR (dB) 

Mean (std.)              Med. 
SSIM 

Mean (std.)            Med. 
NMI 

Mean(std.)             Med. 
×  × × 19.96(0.57) 20.09 0.70(0.03) 0.71 0.21(0.01) 0.21 
 × ×  19.92(0.63) 19.75 0.70(0.03) 0.71 0.21(0.01) 0.21 
 ×  × 19.94(0.56) 20.03 0.70(0.03) 0.71 0.21(0.01) 0.21 
 × × × 20.03(0.61) 20.06 0.70(0.03) 0.71 0.21(0.01) 0.21 

× represents involvement of the corresponding term in the loss function. Bold text indicates the best performance. 
 

 
FIGURE 7.  Visual comparison to show the effectiveness of our proposed comprehensive loss function. 
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𝐈ௌ and 𝐈ீ். The mini-batch size and epoch are set to 16 and 
200, respectively. For the generator, we use the Adam 
optimizer [29] with the momentum parameter 𝛽ଵ =0.9 and 
adopt a stepwise, exponential-decay learning rate schedule 
with initial value=5×10-4, decay step=252, and decay 
rate=0.989. We use the same optimizer and learning rate 
schedule for the discriminator. We initialize the generator 
and the discriminator with an He normal initializer [30]. We 
set 𝜆ଵ, 𝜆ଶ, and 𝜆ଷ in 𝐿ீ to be 0.2, 0.02, and 0.1, respectively.  
    For 3D-DenseU-Net, we randomly sample 80 patches per 
volume with a size of 48×48×48. The mini-batch size and 
epoch are set to 12 and 300, respectively. We use the Adam 
optimizer with 𝛽ଵ =0.9 and adopt a stepwise, exponential-
decay learning rate schedule with initial value=5×10-4, decay 
step=373, and decay rate=0.989. We initialize it with the He 
normal initializer and set 𝜆ଵand 𝜆ଷ in its loss function to 1 
and 0.001, respectively. Note that not like training, inference 
is not patch-based. On the contrary, it is based on whole MR 
images. Therefore, no special post-processing is needed in 
our method. 

  For the SR [4] method, we set appropriate parameters for 
coupled dictionary training. Concretely, we set dictionary 
size=512, patch number=100,000, patch size=13×13, 
sparsity regularization=0.15, and overlap=12. Notably, for 
bicubic interpolation and SR methods, we only utilize axial 
thick-section MR images given their limitations. 

  For 3D-SRU-Net, we choose appropriate hyper-
parameters to guarantee its best performance while 
maintaining good comparability. Concretely, we consider 
the patch size of 32×32×15 for 𝐈 and 32×32×120 for 𝐈ௌ and 
𝐈ீ். We set the mini-batch size and epoch to 32 and 300, 
respectively. We adopt the Adam optimizer with a parameter 
of 𝛽ଵ =0.9, initial learning rate=5×10-4, and the bicubic-
weighted MSE loss function as adopted in [5].  

  The SR method was implemented in MATLAB2017a. 
The training process took approximately 10 hours, while the 
reconstruction process took approximately 2 hours per 
sample. All the DL methods were implemented with 

Python3.6.2 and TensorFlow1.3, running on a NVIDIA 
Titan Xp GPU with 12 GB of RAM. Our 3D-Y-Net-GAN 
took approximately 20 hours for training, 3D-DenseU-Net 
took approximately 20 hours for training, and 3D-SRU-Net 
took approximately 11 hours for training. 

C. ABLATION EXPERIMENT ON INPUT DATA 
In this section, we design an experiment on the three 
aforementioned cases to demonstrate the impact of different 
input data. The reconstruction results of the three cases are 
visualized in Fig. 6. We can see that reconstructed thin-
section MR images based on images in the axial and sagittal 
planes have more structural details and less distortion 
compared to images generated from single-plane thick-
section images. This is because multiplanar thick-section 
MR images could be fused and thus contribute 
collaboratively to the reconstruction task. Their quantitative 
evaluation is summarized in Table II, which shows that the 
reconstruction method with multiplanar MR image fusion 
can generate thin-section images of higher similarity with 
ground-truth images. 

D. ABLATION EXPERIMENT ON LOSS FUNCTION 
In this section, to validate the contribution of each term in 
our proposed comprehensive loss function, we set three 
comparison experiments to show the effectiveness of self-
adaptive Charbonnier loss, gradient correction loss, and 
adversarial loss. Note that this ablation experiment is based 
on our proposed 3D-Y-Net-GAN, and we do not conduct 5-
fold cross-validation here. Their reconstruction results are 
shown as Fig. 7. From the visualization comparison, we can 
see that the ℓଵ  norm generates blurry images compared to 
self-adaptive Charbonnier loss. The results based on a loss 
function without gradient correction loss show less sharp 
edges compared to our proposed loss function. A loss 
function without adversarial loss generates less realistic 
images than our proposed loss function. The quantitative  
 

TABLE IV 
QUANTITATIVE EVALUATION OF THIN-SECTION MR IMAGE RECONSTRUCTION METHODS: PSNR, SSIM, NMI, AND MAE 

Dataset Methods Input plane(s) 
PSNR (dB) 

 Mean (std.)      Med. 
SSIM 

  Mean (std.)    Med. 
NMI 

 Mean(std.)        Med. 
MAE 

 Mean(std.)       Med. 

Cross-validation 
Dataset 

Bicubic [13] Axial Only 14.59(0.44) 14.58 0.31(0.04)    0.30 0.17(0.01) 0.17 32.96(1.69) 33.11 
SR [4]  Axial Only 14.65(0.52) 14.72 0.30(0.05) 0.30 0.15(0.01) 0.16 32.58(2.58) 32.48 
3D-SRU-Net [5]  Axial and Sagittal 19.07(0.69) 19.17 0.61(0.05) 0.62 0.19(0.01) 0.20 15.16(0.33) 15.15 
3D-Y-Net-GAN Axial and Sagittal 19.65(0.81) 19.58 0.68(0.04) 0.69 0.21(0.01) 0.21 14.16(1.77) 13.65 
Ours Full Axial and Sagittal 19.75(0.85) 19.69 0.69(0.05) 0.71 0.21(0.02) 0.21 13.90(1.79) 13.40 

Independent 
Testing Dataset 1 

Bicubic [13] Axial Only 13.59(0.92) 13.74 0.27(0.06) 0.28 0.16(0.01) 0.16 35.32(3.88) 34.25 
SR [4] Axial Only 13.83(0.95) 13.96 0.28(0.06) 0.29 0.15(0.01) 0.15 35.26(3.87) 34.13 
3D-SRU-Net [5] Axial and Sagittal 17.63(1.27) 17.47 0.57(0.06) 0.57 0.17(0.02) 0.17 18.29(2.77) 18.34 
3D-Y-Net-GAN Axial and Sagittal 18.00(1.41) 17.63 0.60(0.07) 0.60 0.18(0.02) 0.18 17.00(2.96) 17.15 
Ours Full Axial and Sagittal 18.18(1.44) 17.86 0.61(0.08) 0.61 0.19(0.02) 0.19 16.93(2.95) 16.98 

Independent 
Testing Dataset 2 

Bicubic [13] Axial Only 13.76(1.20) 14.26 0.27(0.07) 0.28 0.16(0.01) 0.16 34.16(4.95) 32.03 
SR [4] Axial Only 13.66(1.03) 14.04 0.23(0.05) 0.23 0.14(0.01) 0.14 35.33(4.33) 33.18 
3D-SRU-Net [5] Axial and Sagittal 18.14(1.55) 18.84 0.56(0.08) 0.58 0.19(0.02) 0.19 17.25(3.27) 15.95 
3D-Y-Net-GAN Axial and Sagittal 18.41(1.71) 19.01 0.59(0.09) 0.62 0.19(0.02) 0.20 16.32(3.48) 15.13 
Ours Full Axial and Sagittal 18.56(1.72) 19.17 0.61(0.09) 0.64 0.20(0.03) 0.20 16.40(3.47) 15.07 

Bold text indicates the best performance. We show an extra metric mean absolute error (MAE) for quantitative evaluation of residual images. Note that all 
the metrics are calculated based on 8-bit grayscale images. 
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FIGURE 8.  Visual comparison among four reconstruction methods. Color bars illustrate the intensity range of residual images. The first, fourth, seventh 
rows illustrate the axial, sagittal, and coronal views of the reconstructed thin-section MR images by using four different methods, respectively. The 
second, fifth, and eighth rows illustrate the local enlarged views. The third, sixth, and ninth rows illustrate the error maps. 
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evaluation shown in Table III further validates the 
contribution of our proposed loss function.   

E. COMPARISON WITH OTHER METHODS 
In this section, we design a comparison experiment to 
evaluate our proposed method by comparing it with three 
existing methods, traditional bicubic interpolation [13], 
sparse representation [4], and 3D-SRU-Net [5]. In addition, 
we also illustrated the result of the first-stage 3D-Y-Net-
GAN, to validate the effectiveness of the second-stage 
network. The reconstruction results of a certain slice in the 
center of the sampling intervals are visualized in Fig. 8. 
Compared to the other three methods, our proposed 
reconstruction framework generates the most realistic MR 
images, which is closer to the ground truth on the rightmost 
column of Fig. 8.  

  The traditional bicubic interpolation method shows blurry 
reconstructed results and suffers from severe detail distortion 
as well as artifacts, partly due to its limited receptive fields, 
untrainable structure, and lack of sagittal information. 

  The sparse representation method generates smoother 
results with relatively better tissue coherency than bicubic 
interpolation but still outputs poor results in the sagittal and 
coronal planes for its 2-D receptive field and limited 
modeling capacity. 

  While 3D-SRU-Net reconstructed thin-section MR 
images with less artifacts, it provided worse results than our 
proposed framework. Two factors can account for its worse 
performance. First, given its single-stage architecture, 3D-
SRU-Net suffers from inevitable insufficiency in modeling 
capacity and thus cannot provide a balance among feature 
fusion, upsampling, and detail preservation, which leads to a 
poor performance in the sagittal plane reconstruction. 
Second, an upscaling Path 1-8 based on shallow features 
passes through the top-level skip connection. Potential 
downsides of this design are that features with severe 
artifacts caused by fractionally-strided convolution with a 
small kernel size and a very large upscaling factor is directly 
passed to last several layers through the top-level connection, 
which harms the reconstruction results. 

  In the close-up views, we note that our framework 
reconstructs realistic images that are spatially closer to the 
ground truth after the first-stage reconstruction and recovers 
more tissue details in sagittal and coronal planes after the 
detail recalibration of the second stage, which reflects the 
effectiveness of our proposed two-stage reconstruction 
framework. 

  The overall experimental results are summarized in Table 
IV, in which we compare the mean values, standard 
deviations, and median values of the above metrics. We 
show the experimental results on three different datasets to 
illustrate the generalizability and robustness of our proposed 
method. 
    Our method outperforms existing methods on all three 
datasets, with higher PSNR, SSIM, NMI, and mean absolute 
error (MAE). Specifically, in contrast to the untrainable 
bicubic interpolation method, our method can learn from 

training samples to generate images with better tissue 
coherency. Compared to the SR method, our method can 
utilize 3-D receptive fields and greater modeling capacity to 
recover more realistic thin-section images. Also, notice that 
SR method has worse statistical results on the independent 
testing dataset 2 than on independent testing dataset 1, which 
shows that our model has better robustness than SR method 
when dealing with different datasets. Compared to 3D-SRU-
Net, our full framework can better learn mapping from the 
thick-section MR images to corresponding thin-section MR 
images, which means dealing with feature fusion, 
upsampling, and detail recalibration separately and 
successively will assign a clear task to the neural networks 
given their limited modeling capacity. This improvement in 
the final results further confirms the superiority of our 
proposed method. Note that our model not only shows better 
performance on cross-validation dataset, but also shows 
better reconstruction quality on two more testing datasets. 
Also, since the number of testing data samples in our 
experiments is around 4 times as many as the training data 
samples we used, our proposed reconstruction framework 
shows good generalizability and robustness to be applied to 
larger database.   
IV. CONCLUSION 
We proposed a two-stage reconstruction framework to 
reconstruct thin-section infant head MR images from thick-
section images in the axial and sagittal planes. Our proposed 
3D-Y-Net-GAN, trained on paired patches of thick-section 
MR images, reconstructed preliminary thin-section MR 
images for subsequent refinement. Then, based on the output 
of the first stage and original thick-section images, our 
proposed 3D-DenseU-Net was trained for further detail 
refinement and performance improvement. Moreover, we 
proposed a comprehensive loss function composed of a self-
adaptive Charbonnier loss, a 3-D gradient correction loss, an 
adversarial loss, and an ℓଶ  weight regularization loss for 
more effective and more realistic reconstruction. 

Two ablation experiments on different input data and our 
proposed loss function have been conducted. The 
visualization and quantitative evaluation demonstrated that 
our proposed multiplanar image fusion and comprehensive 
loss function could contribute to performance improvement 
in reconstruction. A comparison experiment with three 
existing methods was conducted based on a cross-validation 
dataset and two independent testing datasets. The 
quantitative evaluation revealed that our proposed method is 
able to reconstruct thin-section MR images with higher 
PSNR, SSIM, and NMI compared to the other three methods, 
including traditional bicubic interpolation [13], sparse 
representation [4], and 3D-SRU-Net [5]. Note that we show 
mean absolute error to demonstrate that our reconstruction 
results have lower residues by average, where we use 8-bit 
grayscale for evaluation. Even though MAE of Ours Full is 
a little bit worse than that of our first stage network on 
independent testing dataset 2, our full model still shows 
overall better reconstruction details because its loss function 
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focuses on penalizing outlier pixel predictions to generate 
more realistic images. In addition, we illustrated visualized 
results generated from the above four methods to bolster the 
superiority of our method’s performance compared to other 
methods. Although the objective of our proposed method is 
the reconstruction of thin-section infant head MR images 
from thick-section images in axial and sagittal planes, it can 
be easily extended to other application contexts, such as 
three-plane reconstruction or adult head MR image 
reconstruction. Furthermore, this reconstruction method can 
also be used to normalize image layer spacing, to benefit 

data-driven researches based on image big data. 
    Data preprocessing is an important factor to guarantee the 
applicability of our proposed reconstruction framework. We 
apply unified spatial normalization, histogram matching, and 
grayscale normalization to all MR images to mitigate the 
impacts caused by their various intensities and contrast 
ranges. We also adopt data augmentation to enlarge our 
training dataset. In future work, we will generalize our 
reconstruction method and perform validation on more data 
of different categories.
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