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Abstract

Pursuing better imaging quality and miniaturizing imaging devices are two trends in the current development of
ultrasound imaging. While the first one leads to more complex and expensive imaging equipment, poor image
quality is a common problem of portable ultrasound imaging systems. In this paper, an image reconstruction
method was proposed to break through the imaging quality limitation of portable devices by introducing
generative adversarial network (GAN) model into the field of ultrasound image reconstruction. We combined two
GAN generator models, the encoder-decoder model and the U-Net model to build a sparse skip connection U-Net
(SSC U-Net) to tackle this problem. To produce more realistic output, stabilize the training procedure, and improve
spatial resolution in the reconstructed ultrasound images, a new loss function which combines adversarial loss, L1
loss, and differential loss was proposed. Three datasets including 50 pairs of simulation, 40 pairs of phantom, and 72
pairs of in vivo images were used to evaluate the reconstruction performance. Experimental results show that our
SSC U-Net is able to reconstruct ultrasound images with improved quality. Compared with U-Net, our SSC U-Net is
able to preserve more details in the reconstructed images and improve full width at half maximum (FWHM) of
point targets by 3.23%.
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1 Introduction
Ultrasound has become an indispensable imaging technol-
ogy in current clinical medicine. Compared with com-
monly used imaging modalities, such as magnetic
resonance imaging (MRI), computed tomography (CT),
and positron emission tomography/single-photon emis-
sion computed tomography (SPECT/PET), ultrasound im-
aging is real-time, portable, inexpensive, and free of
ionizing radiation risks [1]. Over the past decades, ultra-
sound imaging has gone through rapid development and
presented two trends. Since the major limitation of ultra-
sonography is the relatively low imaging quality, consider-
able effort has been made to improve the resolution and
contrast, or reduce the artifacts of the ultrasound imaging
[2–4]. Benefiting from major development of imaging
techniques, the ultrasound imaging quality has obtained

considerable improvement. Developed imaging algorithms
or signal processing processes, however, naturally lead to
more complex and expensive ultrasound equipment. On
the other hand, in order to take full use of the portability
of ultrasound imaging, the other trend is to minimize or
simplify the imaging equipment for the wide range of
applications such as family examination or health care in
extreme environment [5–7]. Due to the size limit of the
equipment, the imaging quality is further degraded in
portable ultrasound imaging system.
Conventional ultrasound imaging systems usually

weight hundreds of kilograms. Most of ultrasound im-
aging systems equipped with wheels, which allows a cer-
tain kind of mobility. For example, bedside ultrasound
has been used in biopsy guidance [8], intraoperative
navigation [9], and obstetrical monitoring [10]. The large
size and heavy weight of conventional ultrasound equip-
ment, however, prohibit the usage of ultrasound imaging
in other out-of-hospital arenas. With recent advances in
integrated circuit, it appeared lightweight pocket-size
ultrasound imaging devices, which have been used in
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emergency aid on the accident scene, disaster relief, mili-
tary operation, health care in spaceship, family doctor
scenario, etc. [11, 12]. Despite the wide application pos-
sibilities, the poor imaging quality became a major limi-
tation of the portable ultrasound imaging system.
Therefore, it is of great interest to improve the imaging
quality of portable ultrasound equipment.
There are three aspects concerning ultrasound im-

aging quality, namely, spatial resolution, contrast, and
noise level. Compared with the traditional normal-size
imaging devices, portable equipment typically produces
images with lower spatial resolution, lower contrast, and
greater noise. The poor imaging quality not only hinders
the doctors from giving confident diagnosis but also
misleads the doctors in making wrong decision or oper-
ation in emergency treatment. As a result, the poor im-
aging quality has become the major obstacle to the
development and further application of portable ultra-
sound equipment. This motivates us to propose an ultra-
sound image reconstruction method to improve the
imaging quality of portable equipment in terms of reso-
lution, contrast, and noise reduction.
In the last three decades, many methods have been

proposed for quality improvement in ultrasound im-
aging. Beamforming is a commonly used method to im-
prove lateral/axial resolution or contrast of the imaging.
By creating spatial selectivity of signals received from or
sent to a transducer array, beamforming can produce
imaging signals with narrow main-lobe, suppressed side-
lobes, dynamic focus, and reduced speed of sound errors
[13]. The representative beamforming algorithms in-
clude delay-and-sum (DAS), minimum variance (MV)
[14, 15], and eigenspace-based MV (ESMV) [16, 17].
Adaptive beamforming such as MV or ESMV is able to
provide resolution and contrast improvement around
30% or above than traditional DAS beamforming [18].
Besides beamforming methods, some deep learning
methods are introduced recently to reconstruct images
from radio frequency (RF) signals. In [19], Nair et al. de-
signed a fully convolutional neural network to segment
anechoic cysts directly from RF signals without beam-
forming. Luchies et al. [20] reconstructed ultrasound im-
ages from RF signals with a deep neural network and
observed a better reconstruction quality compared with
DAS beamforming. Although advanced beamforming
methods and deep learning methods based on RF signals
could improve the imaging quality successfully, this
group of methods involve the complex calculation on RF
signals which are hardly obtained in commercially avail-
able ultrasound imaging equipment.
Compared with the beamforming methods on RF sig-

nal domain, image reconstruction methods on image do-
main are more convenient and versatile. Yang et al. [21]
used a variation of pixel compounding method to

reconstruct a high-resolution image from a sequence of
ultrasound images acquired with random motion. Taxt
and Jirík [22] proposed a noise robust devolution
method that deconvolved the first and second harmonic
images separately, resulting in higher resolution images
with reduced speckle noise. In [23], Chen et al. proposed
a compressive deconvolution framework to reconstruct
enhanced RF images by optimization method of the al-
ternating direction method of multipliers. The main as-
sumption that has been used in [23] is that point spread
function (PSF) of the ultrasound imaging is spatially in-
variant and can be estimated from RF signal. As a result,
for reconstructing a high-quality image, image recon-
struction–based methods usually need more information
besides a low-quality image. A few measurements with
random motion, fundamental and harmonic images, and
even parameter estimation from RF signal are required
in [21–23], respectively.
Speckle noise reduction is also an important aspect of

image quality improvement since the existence of
speckle considerably lowers the image contrast and blurs
image details. Many speckle reduction techniques have
been proposed such as frequency/spatial compounding
[24, 25], spatial filtering [26, 27], and multiscale analysis
[28, 29]. Although some methods are able to reduce
speckle noise effectively and helpful to image analysis
task such as image segmentation, registration, and object
detection, this group of methods always tries to strike a
balance between noise reduction and detail preservation.
Furthermore, speckle noise reduction has no contribu-
tion to the resolution which is the most important index
of imaging quality.
Abovementioned methods such as beamforming,

image reconstruction, and noise reduction tend to
focus on one or two aspects of image quality. In this
paper, we tried to improve image quality in all as-
pects by using deep learning method to generate
high-quality images. Previous works proved that deep
learning methods can be applied to medical image
generation [30–32] and usually outperform traditional
methods. Specifically for ultrasound image reconstruc-
tion, comparing with normal-size ultrasound imaging
equipment, the imaging quality of portable equipment
is degraded in resolution, contrast, and heavy noise
jointly. To reconstruct a high-resolution ultrasound
image from a low-resolution one is similar to an
image-to-image translation task [33]. We followed
some previous works dealt with similar problems
using GAN (Generative adversarial networks) in this
paper. An image reconstruction method based on
GAN was proposed to break through the imaging
quality limitation of portable ultrasound devices. For
the task at hand, the GAN-based method has the fol-
lowing advantages: (1) Multi-level nonlinear mapping
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relationship between the low-quality images and the
high-quality images can be extracted by learning
model, which therefore has potential to improve
imaging quality in multiple aspects. (2) The feature
extractors are automatically learned from actual ultra-
sound images, not human designed, and therefore
more representative and adaptive to data. (3) The dis-
criminator used in GAN is able to improve imaging
quality visually. (4) Once the model is trained, the re-
construction procedure is a one-step and feedforward
process, which is therefore more direct and efficient
than some other methods that involve iterated calcu-
lations, also more suitable for real-time ultrasound
image processing. (5) The fast developing technology
on hardware implementation of neural networks
allows our method to be implemented on small and
portable hardware like FPGAs, and thus easily incor-
porated into the current portable ultrasound
equipment.
The rest of the paper is organized as follows: Methods

describes the proposed method and the experimental
data, Experiments shows the experimental results, and
Results and discussion concludes our work.

2 Methods
2.1 Network architecture
In this study, we proposed a GAN model to reconstruct
high-resolution images for portable ultrasound imaging
devices. The network architectures of the GAN models
used in this study are shown in Fig. 1.

2.1.1 Generator with sparse skip connections
There are many choices to build the generator of a
GAN. One choice is to use an encoder-decoder model
as the GAN generator [34]. In an encoder-decoder
model, an encoder is defined as a 3 × 3 convolution
layer followed by an activation layer and a batch-
normalization layer. The stride of the convolution is
[2, 2] in order to downsample the image. The notation
[x, y] means that for a two dimension convolution, the
stride is of the convolution kernel is x and y for the first
and second dimension respectively. A decoder has a
similar structure to the encoder, but uses a 4 × 4 decon-
volution instead in order to avoid checkerboard artifacts
[35]. The stride of the deconvolution is [2, 2] in order to
upsample the image. An encoder-decoder model usually
uses the same number of encoders and decoders. An

Fig. 1 Flow chart of the reconstruction algorithm
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input image is first downsampled by encoders, and then
upsampled to restore the original size by decoders. The
encoder-decoder model we used in this paper is given in
Fig. 2(a). It has three encoders and decoders. The input
of the model is a 128 × 128 one channel patch. The acti-
vation function we used is leaky ReLU.
However, as is demonstrated in [33], a bottleneck ex-

ists in the structure of the encoder-decoder model,
which limits the sharing of low-level information be-
tween input and output. In [33], the authors proposed a
U-Net model to allow more low-level information to

pass from the input to the output. To do this, the U-Net
model adds skip connections between mirrored encoders
and decoders compared with an encoder-decoder model.
The U-Net model we used is given in Fig. 2(b). The U-
Net model has been successfully applied to the super-
resolution reconstruction of many medical images, such
as MRI [30, 32], plane wave ultrasound images [36], and
CT [37]. However, as low-quality ultrasound images
have many speckles and artifacts, applying a U-Net
model to the ultrasound image super-resolution recon-
struction task raises a new issue: sharing all low-level

Fig. 2 An encoder-decoder model (a) and a U-Net model (b); Our SSC U-Net model (c)
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information between the input and the output will bring
speckles and artifacts in low-resolution images into re-
constructed high-resolution images. This is because
there is a shallow feedforward path through the top skip
connections which extract few features from the input
images.
In order to maintain the structure information in the

low-resolution image, and meanwhile not bring speckles
and imaging artifacts in the low-resolution image to the
high-resolution one, we designed a new generator which
only concatenated the output of the third encoder to the
input of the third decoder. This design keeps the bene-
fits of the U-Net while reduces the low-level information
parameters. We call our model a sparse skip connection
U-Net (SSC U-Net). Our network is shown in Fig. 2(c).

2.1.2 Discriminator and training strategy
The discriminator uses local patches of the origin image
during the training process. This strategy is based on the
assumption that pixels from different patches are inde-
pendent. It encourages the discriminator to model high-
frequency details [38]. Other benefits of local patching
are that it helps enlarge the data set and save memory
resources during the training process. This idea is com-
monly accepted in tasks like image style transference
[39]. The patch size in our network is 128 × 128.
Our training strategy follows the approach in [40]. We

train the generator first. The discriminator is trained
then with the real images and the images generated by
the generator. We use Adam solver in our method.

2.2 Objective
A cross entropy loss is usually used in GAN training.
We call this loss adversarial loss:

LGAN G;Dð Þ ¼ Ex;y�Pdata x;yð Þ logD x; yð Þ½ �þ
Ex�Pdata xð Þ½ logð1−D G xð Þð Þ� ð1Þ

where x refers to the input vector and y refers to the
output vector. D refers to the discriminator and G refers
to the generator. L refers to the loss function and E re-
fers to expectation. The adversarial loss is used to let the
generator generates images as close to the real images as
possible.
In our task, we needed to reconstruct a high-resolution

image according to the input low-resolution images. This
is a supervised learning, so we implemented L1 loss in our
model to maintain pixel-wise similarity [41]. Previous
work [42] confirms that it is possible to mix traditional
loss with adversarial loss in GAN training. L1 loss helps
stabilize the training and preserves low-frequency infor-
mation from images. L1 loss defined as follows:

LL1 Gð Þ ¼ Ex;y�Pdata x;yð Þ y−G xð Þk k1
� � ð2Þ

However, L1 loss will result in blurring in output [41].
Texture and speckle noises, for example, are likely to be
blurred due to L1 loss. While L1 loss is essential to keep
low-frequency information, we introduced a differential

Fig. 3 Examples of experimental data
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loss to preserve the sharpness of edges in the generated
images. The differential loss is defined as the absolute
difference between the sum of the vertical and horizon-
tal gradient of the generated image and the real image.
The differential loss is given as follows:

Ldiff Gð Þ ¼ Ex;y�Pdata x;yð Þ
X
i¼1;2

j ∂y
∂xi

−
∂
∂xi

G xð Þj
" #

ð3Þ

Our final objective is:

G� ¼ arg min
G

max
D

LGAN G;Dð Þ þ αLL1 Gð Þ
þ βLdiff Gð Þ ð4Þ

In our experiments, we choose α = 100 and β = 80 in
Eq. (4).

3 Experiments
3.1 Training datasets
Three datasets including 50 pairs of simulation, 40
pairs of phantom, and 72 pairs of in vivo images were
used to train and test the GAN model. High-quality
and low-quality images of phantom and in vivo data are
generated from different devices and hence need to be
registered. We align the images using a non-rigid image
registration algorithm introduced in [43]. Mutual infor-
mation is used as the similarity metric [30].

A total of 50 pairs of simulation data are generated
by Field II ultrasound simulation program [44, 45].
All simulated data was generated by plane wave
transmission. Two simulation models including cysts
and fetus are used. The images of cyst phantoms are
simulated with the following setting: number of
transducer elements = 64, number of scanning lines
= 50, number of scatterers = 100000 and central fre-
quency = 3.5 MHz, 5 MHz, and 8 MHz. We simulated
20 images for each central frequency. The images of
3.5 and 5MHz central frequency are used as low-
quality images. The images of 8 MHz central fre-
quency are averaged to get a high-quality image. For
the fetus phantom, we simulate 10 low-quality im-
ages with central frequency = 5 MHz, number of
transducer elements = 64, number of scanning lines
= 128, and number of scatterers = 200000, and 10
high-quality images with central frequency = 8MHz,
number of transducer elements = 128, number of
scanning lines = 128, and number of scatterers =
500000. According to [44, 45], these settings are able
to simulate fully developed speckles. In all, we obtain
50 pairs of simulated images with 40 pairs of cysts
and 10 pairs of fetus.
A total of 40 pairs of phantom data are generated

from Vantage 64TM research ultrasound system (Vera-
sonics, Inc., USA) and mSonics MU1 (Youtu Tech-
nology, China). The phantoms include two CIRS

Table 1 Results of the three models on simulation dataset

PSNR SSIM MI FWHM CR

Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.) Mean (Std.)

Low quality 17.74 (0.63) 0.22 (0.07) 0.36 (0.25) 22.6 (1.64) 0.67 (0.01)

Encoder-decoder 24.02 (1.79) 0.50 (0.11) 0.38 (0.08) 17.6 (1.75) 0.64 (0.07)

U-Net 25.69 (1.38) 0.68 (0.04) 0.55 (0.10) 15.5 (2.41) 0.64 (0.05)

SSC U-Net 26.15 (0.71) 0.64 (0.01) 0.60 (0.01) 15.0 (1.36) 0.67 (0.02)

Fig. 4 Results on simulation dataset. On the first line from left to right are low-quality image, encoder-decoder result, U-Net result, SSC U-Net
result, and high-quality image. The second line shows the image in the corresponding red box in the first line
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phantoms (Computerized Imaging Reference Systems,
Inc., USA): ultrasound resolution phantom (model
044) and multi-purpose multi-tissue ultrasound pha-
ntom (model 040GSE), and two self-made pork pha-
ntoms. Verasonics Vantage 64 programmable
ultrasound system is used for high-quality images and
Msonics MU1 handheld ultrasound scanner for low-
quality ones. The setting of Verasonics ultrasound
system is as follows: central frequency = 7MHz, dy-
namic range = 50 dB with multi-angle plane wave
compounding method (20 angles from − 16 to 16°)
and a 40-mm wide L11-4v transducer with 128 ele-
ments. The setting of Msonics MU1 handheld ultra-
sound scanner is as follows: central frequency = 7
MHz, gain = 70 dB, using a 40-mm wide L10-5 trans-
ducer with 128 elements. In all, we acquire 40 pairs
of phantom images, 25 for CIRS phantoms, and 15
for pork phantoms.
Seventy-two pairs of in vivo data are generated

from Toshiba Aplio 500 (Toshiba Medical Systems
Corporation, Japan) and mSonics MU1 (Youtu Tech-
nology, China). Ultrasound images of thyroid from 50
subjects and images of carotid from 22 subjects are
scanned. The clinical machine of Toshiba Aplio 500
with central frequency = 7.5 MHz and gain = 76 dB is

used to generate the high-quality images. The param-
eter for portable machine Msonics MU1 is set as fol-
lows: central frequency = 6MHz, gain = 95 dB, using
a 40-mm wide L10-5 transducer with 128 elements.
The focal depth of the ultrasound image acquisition
is around 1 to 2 cm for in vivo data.
Examples of experimental data are shown in Fig. 3.

The left and right column in Fig. 3 shows the low-
quality and high-quality images respectively. From top to
bottom are examples of simulation, phantom, and
in vivo data respectively, two examples for each
category.

3.2 Performance metrics
To evaluate the image reconstruction performance, we
calculate peak signal-to-noise ratio (PSNR), structural
similarity index (SSIM), and mutual information (MI)
for all three datasets. Full width at half maximum
(FWHM) of point targets and contrast resolution (CR)
are calculated for simulated point object images and
cyst images respectively.
PSNR measures the similarity of two images. If one

is the ground-truth image, it measures the quality of
the other one:

Fig. 5 Result examples of simulated fetus images. On the first line from left to right are low-quality image, encoder-decoder result, U-Net result,
SSC U-Net result, and high-quality image correspondingly. The second line shows the image in the corresponding red box in the first line

Table 2 Results of the three models on phantom dataset

PSNR SSIM MI

Mean (Std.) Mean (Std.) Mean (Std.)

Low quality 20.42 (1.54) 0.34 (0.05) 0.25 (0.22)

Encoder-decoder 24.42 (1.76) 0.50 (0.08) 0.37 (0.07)

U-Net 24.49 (2.39) 0.61 (0.09) 0.43 (0.11)

SSC U-Net 25.64 (1.79) 0.60 (0.13) 0.44 (0.10)

Table 3 Results of the three models on in vivo dataset

PSNR SSIM MI

Mean (Std.) Mean (Std.) Mean (Std.)

Low quality 12.45 (1.51) 0.22 (0.04) 0.45 (0.14)

Encoder-decoder 17.24 (0.72) 0.36 (0.03) 0.48 (0.11)

U-Net 18.37 (0.50) 0.38 (0.03) 0.50 (0.03)

SSC U-Net 18.52 (0.59) 0.38 (0.04) 0.50 (0.11)
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PSNR ¼ 10� log10
2n−1ð Þ2
MSE

 !
ð5Þ

where MSE is the mean squared error between recon-
structed and ground-truth high-quality images, and for
uint8 images, n = 8. The higher PSNR indicates the
higher intensity similarity between reconstruction image
and high-quality image.
SSIM measures the similarity of two images. It is de-

fined as follows:

SSIM ¼ 2μaμb þ c1ð Þ 2σab þ c2ð Þ
μa2 þ μb2 þ c1ð Þ σa2 þ σb2 þ c2ð Þ ð6Þ

where a and b are windows on the reconstructed and
ground-truth high-quality images respectively, μa and μb
are average values of a and b, σa

2 and σb
2 are variances

of a and b, and σab is the covariance between a and b. c1
and c2 prevent the denominator from being zero.
c1 = (k1L)

2, c2 = (k2L)
2 where k1 = 0.01 and k2 = 0.03. The

windows are isotropic Gaussian function with standard
deviation of 1.5. The higher MSSIM represents the

higher structure similarity between reconstruction image
and high-quality image.
MI indicates the mutual dependence between two im-

ages. It is defined as follows for a uint8 image:

MI I; Jð Þ ¼
X255

0
PIJ mð Þ log PIJ mð Þ

PIP J
ð7Þ

where PI and PJ represent the marginal probability dis-
tributions of I and J and PIJ is the joint probability distri-
bution of I and J.
CR is a measure of ability to distinguish difference in

intensity in an image:

CR ¼ SA−SBj j
SA þ SB

ð8Þ

where SA and SB represent the average intensity values
in two regions of interests (ROIs) with the same size.
The higher CR represents the higher imaging contrast.
Since FWHM, CR is only applicable for simulation

data, and PSNR, SSIM, and MI are used to evaluate
the performance of algorithms in phantom data and
in vivo data. The following tables in this part record

Fig. 6 Result examples of cyst phantom images. On the first line from left to right are low-quality image, encoder-decoder result, U-Net result,
SSC U-Net result, and high-quality image correspondingly. The second line shows the image in the corresponding red box in the first line

Fig. 7 Result examples of pork phantom images. On the first line from left to right are low-quality image, encoder-decoder result, U-Net result,
SSC U-Net result, and high-quality image correspondingly. The second line shows the image in the corresponding red box in the first line
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the results of 5-fold cross-validation experiments.
Each dataset is randomly divided into five groups.
One group is used as test data while other groups are
used as train data each time.

3.3 Implementation
We implement our reconstruction model by Tensor-
flow. We use a Titan Xp Graphic Processing Unit
(GPU) for training. We generated a 128 × 128 patch
every ten pixels from an original image. The total
number of data patches is 68,450 pairs of simulation
patches, 38,480 pairs of phantom patches, and 73,736
pairs of in vivo patches. The input images are uint8
images. We rescaled their pixel intensity values to [−
1, 1]. The mean value of the training dataset is min-
used from the input data. Output images are added
by the mean value of training dataset. Intensity values
of the output images are clipped to [− 1, 1]. The im-
ages are then transformed into uint8 grayscale images.
Learning rate of training is set to 0.00005 and follows
an exponential decay to 0.000005. β1 for Adam solver
is set to 0.9.

4 Results and discussion
In this section, we report the results from the three
models we tested: the encoder-decoder model, the U-
Net model, and our SSC U-Net on simulation, phantom,
and in vivo data.

4.1 Simulation data results
The simulation results are shown in Table 1. The SSC
U-Net model out-performed the encoder-decoder model
and the U-Net model with higher PSNR, MI, and CR
and smaller FWHM. Though the U-Net model had the
highest SSIM, we can observe that the generated images
of the U-Net model were over-smoothed. This means
that some high-frequency information was lost. The er-
rors of the generated images and ground-truth images
were averaged by over-smoothing and thus achieved a
better SSIM score. Figure 4 gives examples of simulated
cysts images. The point object in the red box recon-
structed by SSC U-Net had a better resolution than
other methods. Figure 5 gives examples of simulated
fetus images. Details are clearer in the result generated
by SSC U-Net.

Fig. 8 Results of in vivo thyroid data. On the first line from left to right are low-quality image, encoder-decoder result, U-Net result, SSC U-Net
result, and high-quality image correspondingly. The second line shows the image in the corresponding red box in the first line

Fig. 9 Results of in vivo carotid data. On the first line from left to right are low-quality image, encoder-decoder result, U-Net result, SSC U-Net
result, and high-quality image correspondingly. The second line shows the image in the corresponding red box in the first line
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4.2 Phantom data results
Table 2 shows the average performance of the three
models on the phantom dataset. Our model maintained
the highest PSNR and MI. The SSIM of the U-Net
model is 1.6% more than our method. However, the U-
Net model kept its drawbacks of over-smoothing. As is
mentioned in section 4.1, over-smoothing may lead to a
higher SSIM. Figure 6 gives an example of the CIRS
phantoms results. The SSC U-Net model reconstructed
the point objects well while other methods blurred these
point objects. Figure 7 gives an example of pork phan-
toms results. The point object in the red box recon-
structed by SSC U-Net had the highest resolution.

4.3 In vivo data results
Table 3 presents the results tested on the in vivo dataset.
Our SSC U-Net achieved the best performance on
PSNR, SSIM, and MI. Figures 8 and 9 give two examples
of the generated images. Encoder-decoder models failed
to generate a satisfying result on this dataset. Images
generated by the U-Net smoothed some important de-
tails. For example, the calcification point in Fig. 8 and
the cyst in Fig. 9 were blurred by the U-Net. In compari-
son, the result of our SSC-Net was better visually and
kept more details.

4.4 Differential loss
The differential loss was introduced in our network to
maintain sharpness of edges. The impact of the differen-
tial loss was investigated in an ablation experiment. We
chose a horizontal line that crossed the center of a point
object and plotted the intensity of pixels on the line in
Fig. 10. We conclude from the images that with the help
of differential loss, the reconstructed images achieve a
higher resolution.

5 Conclusion
Image quality is vital for portable ultrasound imaging de-
vices. In this paper, we proposed a new generative model
called SSC U-Net to improve the image quality of port-
able ultrasound imaging devices. We tested our model
on three datasets: simulation data, phantom data, and
in vivo data. We compared our results with two other
widely used GAN models: the encoder-decoder model
and the U-Net model. Our experiment results show that
our SSC U-Net model out-performed two other models
in general on all three datasets. Images generated by our
SSC U-Net had a better resolution and preserved more
details than the other two methods.
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