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Large model hits memory capacity
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Mini-batch size of 1 in extreme cases.



Memory saving
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Reversible operators
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Related work

⧫ Scheduling and graph optimization
› Gradient checkpoint: [Chen et al. 2016], [Jain et al. 2020]
› Memory swapping: [Zhang et al. 2019]

⧫ Reversible neural networks
› Implicitly reversible operator, e.g., convolution layers with a stride of 1
› Inplace ABN [Bulò et al. 2018]
› Neural ordinary differential equations [Chen et al. 2018]
› Reversible residual architecture [Gomez et al. 2017]
› Reformer [Kitaev et al. 2020]

⧫ No work on scheduling for reversible neural networks.
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What is the optimal scheduling for 
reversible neural architectures?



Two modes of a reversible operator
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Mode Forward Backward Computation cost Memory cost

M-Mode Discard x Recover x from y 𝑥𝑥 = 𝑓𝑓−1(𝑦𝑦) 0

C-Mode Save x Use x directly 0 Size of x

Mode Forward Backward Computation cost Memory cost

C-Mode Save x Use x directly 0 Size of x



Scheduling problem

⧫ For a neural network with 𝑛𝑛 reversible operators, there are 2𝑛𝑛
possible solutions.
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0/1 Knapsack problem

⧫ 𝑛𝑛 items

⧫ Value, weight

⧫ Bag capacity

⧫ Fill the bag with the maximum value.
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Scheduling problem

⧫ 𝑛𝑛 reversible layers

⧫ Extra execution time, memory footprint

⧫ Memory capacity

⧫ Fill the memory with the maximum 
saved time.
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Algorithm and framework

⧫ Use dynamic programming algorithm to solve the scheduling 
problem (knapsack problem).
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Results on RevNet-104
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Results on RevNet-104
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Conclusions

⧫ New Perspective. Scheduling for reversible architectures.
⧫ Optimality. The problem can be solved use DP.
⧫ Automation. Our framework provides a fully automated solution.
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More in our paper

⧫ Details regarding problem formulation
⧫ What is the optimal batch size?
⧫ More experiments on various reversible neural networks
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Thank you!
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