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Large model hits memory capacity

Memory Capacity

Model Size

Mini-batch size of 1 in extreme cases.
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Memory saving

> Rematerialization (gradient checkpoint)

> Memory swapping

> Reversible operators




Reversible operators
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Related work

Scheduling and graph optimization
Gradient checkpoint: [Chen et al. 2016], [Jain et al. 2020]
Memory swapping: [Zhang et al. 2019]

Reversible neural networks
Implicitly reversible operator, e.g., convolution layers with a stride of 1
Inplace ABN [Bulo et al. 2018]
Neural ordinary differential equations [Chen et al. 2018]
Reversible residual architecture [Gomez et al. 2017]
Reformer [Kitaev et al. 2020]

No work on scheduling for reversible neural networks.
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What is the optimal scheduling for
reversible neural architectures?



Two modes of a reversible operator

X —y X Sy
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Forward Backward Computation cost Memory cost

M-Mode Discard x Recover x from y x=f"1(y) 0

C-Mode Save x Use x directly 0 Size of x




Scheduling problem

» For a neural network with n reversible operators, there are 2"
possible solutions.

Reversible
4 Network |
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0/1 Knapsack problem

’ n items

Value, weight ‘ 6 VJ

Bag capacity

Fill the bag with the maximum value.

minle
_
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Scheduling problem

» n reversible layers

» Extra execution time, memory footprint@ @ @

Memory capacity

>

» Fill the memory with the maximum
saved time.

11



Algorithm and framework

» Use dynamic programming algorithm to solve the scheduling

problem (knapsack problem).
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Reversibility
analysis

\

Profiling
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Decision via
DP

Efficient
training




Results on RevNet-104
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Results on RevNet-104
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Conclusions

| » New Perspective. Scheduling for reversible architectures.
» Optimality. The problem can be solved use DP.
» Automation. Our framework provides a fully automated solution.
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More in our paper

‘ » Details regarding problem formulation
+ What is the optimal batch size?
» More experiments on various reversible neural networks
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Thank you!
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